执行蒙特利尔议定书
多边基金执行委员会
第三十七次会议
2002 年 7 月 17 日至 19 日，蒙特利尔

项目提案：印度

本文件载有基金秘书处对以下项目提案的评论和建议：

泡沫塑料

- 在泡沫塑料行业消除各类 CFC 的全行业淘汰计划项目提案 开发计划署

加工剂

- 在氯化橡胶次级行业淘汰 CTC 消费的全行业计划 世界银行
项目评价表

印度

行业：泡沫塑料
行业 ODS 使用量（2000）：2,391 ODP 吨

次级行业成本效益阈值：
连皮 16.86 美元/公斤
硬质 7.83 美元/公斤

项目名称:

(a) 在泡沫塑料行业消除各类 CFC 的全行业淘汰计划项目提案

<table>
<thead>
<tr>
<th>项目数据</th>
<th>多次级行业</th>
</tr>
</thead>
<tbody>
<tr>
<td>企业消耗量（ODP 吨）</td>
<td>639.00</td>
</tr>
<tr>
<td>项目目标（ODP 吨）</td>
<td>611.00</td>
</tr>
<tr>
<td>项目期限（月）</td>
<td>48</td>
</tr>
<tr>
<td>原申请经费数额（美元）</td>
<td>8,473,050</td>
</tr>
<tr>
<td>最终项目费用（美元）：</td>
<td></td>
</tr>
<tr>
<td>增支资本费用（a）</td>
<td>5,825,000</td>
</tr>
<tr>
<td>酌处资金（b）</td>
<td>582,500</td>
</tr>
<tr>
<td>增支经营费用（c）</td>
<td>2,065,550</td>
</tr>
<tr>
<td>项目费用总额（a+b+c）</td>
<td>8,473,050</td>
</tr>
<tr>
<td>地方所有权（%）</td>
<td>100%</td>
</tr>
<tr>
<td>出口比重（%）</td>
<td>0%</td>
</tr>
<tr>
<td>申请经费数额（美元）</td>
<td>8,473,050</td>
</tr>
<tr>
<td>成本效益值（美元/公斤）</td>
<td>13.87</td>
</tr>
<tr>
<td>对应出资是否已经确认？</td>
<td></td>
</tr>
<tr>
<td>国家协调机构</td>
<td>环境和森林部</td>
</tr>
<tr>
<td>执行机构</td>
<td>开发计划署</td>
</tr>
</tbody>
</table>

秘书处的建议:

项目目标（ODP 吨）	
建议供资额（美元）	
执行机构	
多边基金的费用总额（美元）	
项目说明

行业背景

- 可以得到的 ODS 总消费量最新数字（2000 年） 18,760.46 ODP 吨
- 附件 A 一类物质（各类 CFC）基准消费量 6,681.00 ODP 吨
- 2000 年附件 A 一类物质消费量 5,614.34 ODP 吨
- 泡沫塑料行业 CFC 基准消费量 2,391.00 ODP 吨
- 2000 年泡沫塑料行业 CFC 消费量 2,898.00 ODP 吨
- 截至 2002 年 3 月底为泡沫塑料行业投资项目核准的经费 31,858,131.00 美元

- 截至 2002 年 6 月底为泡沫塑料行业投资项目核准的 CFC 数量 4,400.90 ODP 吨
- 截至 2002 年 6 月底泡沫塑料行业投资项目已淘汰的 CFC 数量 3,665.40 ODP 吨
- 截至 2002 年 6 月底经核准但尚未完成的泡沫塑料行业投资项目应淘汰的 CFC 数量 736.30 ODP 吨
- 提交第三十七次会议的项目将淘汰的 CFC 数量 611.00 ODP 吨

1. 截至 2002 年 6 月，印度获批准的项目有 155 个（包括取消的 4 个项目），价值 31,858,131 美元，将淘汰 4,401 ODP 吨 CFC。这些项目的目标主要是生产硬质、连皮和软质模压聚氨酯泡沫塑料的企业。其他次级行业获批准的淘汰 CFC 项目只有五个——苯酚泡沫塑料次级行业一个，挤压成型聚乙烯和聚苯乙烯泡沫塑料次级行业四个。为支持印度的淘汰方案，还批准了五项多元醇生产和配方原料预混公司活动，总计 152 万美元。两个原料预混公司有一些项目作为中小企业项目的一部分获得批准。

2. 开发计划书对行业 CFC 消费量的分析显示，该行业的余留 CFC-11 消费量共计 639 ODP 吨，其中 99 个企业消费的 612 ODP 吨可视为符合资助条件，27 个中小型企业消费的 27 ODP 吨不符合资助条件。

在印度泡沫塑料行业消除各类 CFC 的全行业淘汰计划

3. 开发计划书代表印度政府提出了一项在泡沫塑料行业消除可获资助的各类余留 CFC 的全行业淘汰计划。该计划目标如下：

(a) 四年内在印度泡沫塑料行业完全淘汰各类 CFC；

(b) 使印度能够根据蒙特利尔议定书的控制时间表履行逐步减少 ODS 的义务；

(c) 确保及时、持续并以具有成本效益的方式淘汰泡沫塑料行业的 CFC，途径是拟订并执行综合性的办法，将投资、技术支助和管理内容结合在一起。
4. 淘汰 611.8 ODP 吨 CFC-11 共需 8,473,050 美元，使用 HCFC-141b 之后仍残存 24.01 ODP 吨，结果是累积成本效益为 14.42 美元/公斤。该数额的组成情况是:

<table>
<thead>
<tr>
<th>部分</th>
<th>数额（美元）</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC 淘汰项目部分</td>
<td>6,592,050</td>
</tr>
<tr>
<td>配方原料预混公司部分</td>
<td>891,000</td>
</tr>
<tr>
<td>技术支持</td>
<td>440,000</td>
</tr>
<tr>
<td>管理部</td>
<td>550,000</td>
</tr>
<tr>
<td>总计</td>
<td>8,473,050</td>
</tr>
</tbody>
</table>

确定符合资助条件的企业

5. 开发计划署利用 1994 年第 13 次会议批准的供其拟订印度泡沫塑料行业 ODS 淘汰战略和行动计划的资源，与环境和森林部合作，为确定该行业余留的 CFC 使用者，数次公开并在报纸上作出宣布。在该行业进行调查并举办讲习班之后制订了一些项目，其中一些项目已经提交，以申请经费。可应要求提供开发计划署提交的调查现况报告。

6. 该行业计划是上游供应商、政府部门、泡沫塑料生产厂商和开发计划署当地和国际专家持续交流的结晶。为了尽量确定 CFC 使用企业，组织了两期鉴别和技术援助讲习班。据报开发计划署当地和国际顾问访问了 95% 以上的企业。调查获得的数字与可能取得的批发商和贸易商及上游化学品供应商的国内 ODS 销售记录相对照。开发计划署预期调查的误差小于 5%。在消费 638.8 ODP 吨 CFC-11 的总共 132 家企业中，确定 99 家泡沫塑料生产企业（消费 611.0 ODP 吨）和 6 家配方原料预混公司符合资助条件。下文表 1 按次级行业概括列出符合资助条件的企业。所有符合资助条件的企业一览表附后。

表 1: 印度泡沫塑料行业符合资助条件的余留 CFC 消用量

<table>
<thead>
<tr>
<th>次级行业</th>
<th>符合资助条件的余留企业数</th>
<th>2001 年 CFC 消用量（公吨）</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬质泡沫塑料 (一般隔温)</td>
<td>5</td>
<td>56.7</td>
</tr>
<tr>
<td>硬质泡沫塑料 (保温层隔温)</td>
<td>12</td>
<td>116.5</td>
</tr>
<tr>
<td>硬质泡沫塑料 (喷射/现场隔温)</td>
<td>14</td>
<td>114.2</td>
</tr>
<tr>
<td>硬质泡沫塑料 (中小型企业)*</td>
<td>40*</td>
<td>94.1</td>
</tr>
<tr>
<td>软质模压 & 连皮泡沫塑料</td>
<td>28</td>
<td>230.3</td>
</tr>
<tr>
<td>总计</td>
<td>99</td>
<td>611.8</td>
</tr>
</tbody>
</table>

* CFC 消用量少于 5 吨/年的企业

企业基准

7. 生产保温盒、保温管、保温片和保温板的五家企业以及生产保温品的 12 家企业都采用低压注入机。所有喷射泡沫塑料生产商，除一家外，均采用高压的 Polycraft 或
Gusmer 喷射泡沫塑料机。不过所有 40 家中型企业硬质泡沫塑料生产商均采用手工混合作业。28 家模压泡沫塑料生产商除两家采用高压注入机外，其余生产商均采用低压注入机。

淘汰方式

8. 淘汰方式所根据的前提是：

- 在投资项目已获批准的印度泡沫塑料企业中，54% 的企业属于六个群组项目，包括显示此种方式可行性的四个中型企业群组项目；
- 这些项目包括的所有企业基本上是基准消费少于 20 吨/年的中型企业，其中多数企业少于 5 吨/年；

9. 在吸收企业参加、成本效益和淘汰 CFC 方面，此种群组方式已证明颇有成效。根据该项结论，基于逐项目计算的群组方式被用来作为淘汰泡沫塑料行业可获资助的余留消费量的模式。

技术选择

10. HCFC-141b 技术被选为计划中所有硬质和连皮泡沫塑料项目最适当的技术，而全水吹技术将用于软质模压泡沫塑料项目。这就要求硬质泡沫塑料生产商用高压注入机取代低压泡沫注入机和手工混合作业，并要求喷射泡沫塑料和软质模压泡沫塑料生产商改造现有注入机。

项目费用计算

11. 根据所挑选的方式和技术选择，采用以下标准费用成分计算每一企业的增支资本费用：

<table>
<thead>
<tr>
<th>增支费用</th>
<th>费用范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>新高压注入机</td>
<td>20,000 美元 - 80,000 美元</td>
</tr>
<tr>
<td>改造费用</td>
<td>7,500 美元 - 15,00 美元</td>
</tr>
<tr>
<td>试验</td>
<td>2,500 美元 - 10,000 美元</td>
</tr>
<tr>
<td>培训</td>
<td>2,500 美元 - 10,000 美元</td>
</tr>
<tr>
<td>技术援助</td>
<td>5,000 美元 - 10,000 美元</td>
</tr>
</tbody>
</table>

12. 此外还根据经批准的印度项目使用的化学配方原料价格计算每一项目群组的增支经营费用，对每一次级行业则采用平均历史单位增支经营费用。这些计算得出以下数额。
表 2: 根据淘汰计划中的假设计算的 CFC 淘汰项目费用

<table>
<thead>
<tr>
<th>次级行业</th>
<th>企业数</th>
<th>基准 CFC 消费量 (吨)</th>
<th>项目影响 (吨)</th>
<th>ICC (美元)</th>
<th>IOC (美元)</th>
<th>ICC +10% 削减经费 (美元)</th>
<th>项目费用共计 (美元)</th>
<th>项目成本效益值 (美元/公斤)</th>
<th>成本效益值</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬质泡沫塑料 (一般高温)</td>
<td>5</td>
<td>56.70</td>
<td>53.30</td>
<td>525,000</td>
<td>91,174</td>
<td>577,500</td>
<td>586,674</td>
<td>11.00</td>
<td>7.83</td>
</tr>
<tr>
<td>硬质泡沫塑料 (中小型企业)</td>
<td>40</td>
<td>94.10</td>
<td>87.33</td>
<td>1,200,000</td>
<td>157,712</td>
<td>1,320,000</td>
<td>1,477,712</td>
<td>16.92</td>
<td>7.83</td>
</tr>
<tr>
<td>硬质泡沫塑料 (喷涂/现场)</td>
<td>14</td>
<td>114.20</td>
<td>107.35</td>
<td>385,000</td>
<td>331,294</td>
<td>423,500</td>
<td>754,794</td>
<td>7.03</td>
<td>7.83</td>
</tr>
<tr>
<td>硬质泡沫塑料 (保温品)</td>
<td>12</td>
<td>116.50</td>
<td>109.51</td>
<td>840,000</td>
<td>203,060</td>
<td>924,000</td>
<td>1,127,060</td>
<td>10.29</td>
<td>7.83</td>
</tr>
<tr>
<td>软质模压 & 连皮泡沫塑料</td>
<td>28</td>
<td>230.30</td>
<td>230.30</td>
<td>1,120,000</td>
<td>1,282,310</td>
<td>1,232,000</td>
<td>2,515,310</td>
<td>10.91</td>
<td>16.83</td>
</tr>
<tr>
<td>共计</td>
<td>99</td>
<td>611.80</td>
<td>587.79</td>
<td>4,070,000</td>
<td>2,065,550</td>
<td>4,477,000</td>
<td>6,461,550</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

所要求赠款的其他组成部分

13. 除 CFC 淘汰项目费用之外，需要为 6 个配方原料预混公司业务提供经费，每个配方原料预混公司 135,000 美元，技术和管理支助费用共计 990,000 美元，包括 10%的削处经费。额外费用详情如下：

<table>
<thead>
<tr>
<th>美元</th>
<th>包括 10%削处经费</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 个配方原料预混公司的经费 @ 135,000 美元 每一公司</td>
<td>891,000</td>
</tr>
<tr>
<td>技术支助费用:</td>
<td></td>
</tr>
<tr>
<td>为各种泡沫塑料产品和应用确定产品和质量标准</td>
<td>110,000</td>
</tr>
<tr>
<td>通过技术讲习班和会议提供用户/行业互动技术运用援助</td>
<td>220,000</td>
</tr>
<tr>
<td>泡沫塑料技术员的培训、证书和许可证方案</td>
<td>110,000</td>
</tr>
<tr>
<td>管理费用:</td>
<td></td>
</tr>
<tr>
<td>管理单位的设立和运作</td>
<td>110,000</td>
</tr>
<tr>
<td>提高认识和信息传播活动</td>
<td>110,000</td>
</tr>
<tr>
<td>核查和证书</td>
<td>110,000</td>
</tr>
<tr>
<td>报告</td>
<td>55,000</td>
</tr>
<tr>
<td>监测机制</td>
<td>165,000</td>
</tr>
<tr>
<td>共计</td>
<td>1,881,000</td>
</tr>
</tbody>
</table>

概要

14. 根据秘书处的上述计算，下表列出该计划的费用概要，包括配方原料预混公司及技术支助和管理费用需要的数额。
<table>
<thead>
<tr>
<th>年份</th>
<th>ODS 淘汰指标(公吨)</th>
<th>余留 ODS 消费量(公吨)</th>
<th>付款(美元)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>已批准进行中项目</td>
<td>全行业淘汰计划</td>
<td>共计</td>
</tr>
<tr>
<td>2002</td>
<td>221</td>
<td>0</td>
<td>221</td>
</tr>
<tr>
<td>2003</td>
<td>497</td>
<td>0</td>
<td>497</td>
</tr>
<tr>
<td>2004</td>
<td>298</td>
<td>210</td>
<td>508</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>301</td>
<td>301</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>共计</td>
<td>1,016</td>
<td>639</td>
<td>1,655</td>
</tr>
</tbody>
</table>

16. 该计划预示以下活动：

- 计划批准之后即应首次支付包括管理和技术支助部分的 900,000 美元（假定在 2002 年 7 月底之前）。
- 每年的年度履行进度报告应在下一年第一季度提交。
- 应在收到并接受前一年的年度履行进度报告和当年的执行计划之后，在第一季度预支每年的付款。

使用 HCFC-141b 的理由

17. 开发计划署指出，在拟订本提案之前，开发计划署的专家通知了硬质聚氨酯泡沫塑料次级行业预计接受援助的参加企业，并与企业技术和管理人员详细讨论了项目中取代现有 CFC 技术的技术选择。向有关企业详细介绍了以下情况：

1. 现有的临时（低 ODP）取代技术和永久（零 ODP）取代技术。
2. 每一种技术对制造的产品以及他们采用的流程和做法产生的技术经济影响。
3. 每一种技术可能涉及的问题：已知的对环境、健康和安全的影响，例如臭氧消耗潜能值、全球升温潜能值、职业健康、火灾和爆炸危险等。
4. 向他们强调指出 HCFC 技术的临时性质，因为这些技术仍残存 ODP，可能继续对环境造成不利影响，只不过范围小于各类 CFC。
5. 向他们进一步解释说，各种 HCFC 的使用可能会受现在或今后国际公约的限制，今后也可能被淘汰，而淘汰 HCFC 和转用更安全的技术所需的任何投资可能必须由他们自己承担。

18. 开发计划署还指出，这些企业在考虑了烃基和水基技术的商业、安全和操作困难之后，选择了基于 HCFC-141b 的技术。HCFC-141b 使这些企业有把握迅速淘汰旧技术，同时将其产品和性能保持在可接受的水平上。人们认为不宜在该行业计划之下处理第 36/56 (c) 号决定。

19. 印度政府同意这些企业采用 HCFC-141b。

秘书处的评论和建议

评论

20. 印度选择按项目逐项考虑的方式，而不是按任何明确的战略（例如，将管理手段和其他手段及投资活动结合起来，使费用合理化）来确定合适的计划费用。有鉴于此，秘书处建议开发计划署根据多边基金规则，按项目逐项审查该计划。因此，对经批准的印度泡沫塑料项目的背景以及执行机构提交的关于印度已完成泡沫塑料项目的完成项目报告，审查该计划。

21. 秘书处对经批准的印度泡沫塑料项目所要求资金的分析表明，计划中该次级行业的成本效益值远高于在这些次级行业中经批准的印度类似项目次级行业成本效益阈值或加权平均成本效益。下表将加权成本效益与该计划要求的资金的成本效益进行比较。

<table>
<thead>
<tr>
<th>次级行业</th>
<th>经批准的印度项目的加权平均成本效益（美元/公斤）</th>
<th>印度泡沫塑料行业计划的成本效益（美元/公斤）</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬质泡沫塑料 (不包括小型企业)</td>
<td>6.22</td>
<td>10.09</td>
</tr>
<tr>
<td>硬质泡沫塑料 (喷射/现场, 总体项目)</td>
<td>4.76</td>
<td>7.03</td>
</tr>
<tr>
<td>硬质泡沫塑料 (小型企业)</td>
<td>6.01</td>
<td>16.92</td>
</tr>
<tr>
<td>连皮泡沫塑料</td>
<td>9.16</td>
<td>10.91</td>
</tr>
</tbody>
</table>

22. 根据对现有的泡沫塑料行业项目完成报告的分析，行业计划注明的硬质泡沫塑料项目泡沫塑料注入机的价格业经核准并被秘书处用于计算符合资助条件的增支费用。在同
基础上，确定试验费用为 3,000 至 8,000 美元，技术支助费用为 2,000 至 4,000 美元。项目完成报告显示，一般没有培训费。秘书处的计算确认了开发计划指定用来计算支助经营费用的所有因素和假设。

23. 秘书处根据以上对计划中的 99 个企业 CFC 淘汰项目符合资助条件的支助费用所作的计算结果是，总额为 4,753,577 美元，总体成本效益为 8.09 美元/公斤。详细情况如下：

<table>
<thead>
<tr>
<th>项目组成部分</th>
<th>企业数</th>
<th>CFC 消耗量 ODP 吨</th>
<th>影响 ODP 吨</th>
<th>项目赠款美元</th>
<th>累积成本效益美元/公斤</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬质泡沫塑料：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一般隔温</td>
<td>5</td>
<td>56.70</td>
<td>53.3</td>
<td>417,323</td>
<td>7.83</td>
</tr>
<tr>
<td>保温棉隔温</td>
<td>12</td>
<td>116.50</td>
<td>109.51</td>
<td>853,106</td>
<td>7.79</td>
</tr>
<tr>
<td>喷射/现场</td>
<td>14</td>
<td>114.20</td>
<td>107.35</td>
<td>600,799</td>
<td>5.60</td>
</tr>
<tr>
<td>中小型企业</td>
<td>40</td>
<td>92.90</td>
<td>87.33</td>
<td>683,739</td>
<td>7.83</td>
</tr>
<tr>
<td>硬质泡沫塑料小计</td>
<td>71</td>
<td>380.30</td>
<td>357.49</td>
<td>2,554,967</td>
<td>7.15</td>
</tr>
<tr>
<td>皮革/软质模压泡沫塑料</td>
<td>28</td>
<td>230.30</td>
<td>230.30</td>
<td>2,198,610</td>
<td>9.55</td>
</tr>
<tr>
<td>其计</td>
<td>99</td>
<td>610.60</td>
<td>587.99</td>
<td>4,753,577</td>
<td>8.09</td>
</tr>
</tbody>
</table>
其他费用组成部分

配方原料预混公司

24. 为支持印度的 CFC 淘汰工作，批准了五个配方原料预混公司项目。其中有两个项目是专门作为中小型企业项目组成部分批准的，以便为确定的下游企业客户提供配方原料和技术支援，加速它们的 CFC 淘汰工作。配方原料预混公司活动本身并不导致 ODS 消耗或淘汰。它们也不是议定书规定的符合资助条件的替代生产活动。因此，配方原料预混公司项目并不符合资助条件，除非这些项目被用作项目执行的工具和提高下游泡沫塑料生产商的项目成本效益及其 CFC 淘汰率的手段。巴西、哥伦比亚、印度和墨西哥这些国家已批准的配方原料预混公司项目属于此种情况。但是文件中没有证据显示计划中提议的资助费用总额为 891,000 美元的六个配方原料预混公司项目属于此种情况。

技术支援和管理费用

25. 秘书处认为，某些费用项目，如制订产品和质量标准，可能不符合资助条件，按项目逐项执行的方式可能会在某些附属费用的资助方面产生某种程度的双重计算。不过，建议考虑拨款 150,000 美元，协助国家臭氧机构对方案进行监测。

结论

26. 根据上述情况，建议拨款 4,903,577 美元，其中包括提供给国家臭氧机构的 150,000 美元，作为该行业计划符合资助条件的增支经营费用，供开发计划署和印度政府考虑。截至编写本文件时，秘书处尚未收到开发计划署的答复。

建议

27. 待增。
Table A.1: Rigid foam (general insulation) sub-sector

<table>
<thead>
<tr>
<th>No</th>
<th>Enterprise name</th>
<th>Location</th>
<th>Year established</th>
<th>Products</th>
<th>CFC Consumption (MT)</th>
<th>Baseline equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aakriti Ice Box Co.</td>
<td>Delhi</td>
<td>1989</td>
<td>Insulated boxes</td>
<td>12.1</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>2</td>
<td>HR Innovations</td>
<td>Mumbai</td>
<td>1991</td>
<td>Insulated doors</td>
<td>9.7</td>
<td>1 LPD – Polycraft</td>
</tr>
<tr>
<td>3</td>
<td>Kakar Trading Co.</td>
<td>Delhi</td>
<td>1987</td>
<td>Slabs, pipe/sect</td>
<td>11.0</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>4</td>
<td>Patton Tanks</td>
<td>Calcutta</td>
<td>1982</td>
<td>Insulated tanks</td>
<td>7.8</td>
<td>1 LPD – Klowpur</td>
</tr>
<tr>
<td>5</td>
<td>Suchi Foams</td>
<td>Ahmedabad</td>
<td>1994</td>
<td>Panels</td>
<td>16.1</td>
<td>1 LPD – Klowpur</td>
</tr>
</tbody>
</table>

TOTAL 56.7 5 LPDs

Table A.2: Rigid foam (thermoware insulation) sub-sector

<table>
<thead>
<tr>
<th>No</th>
<th>Enterprise name</th>
<th>Location</th>
<th>Year established</th>
<th>Products</th>
<th>CFC Consumption (MT)</th>
<th>Baseline equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aakar Industries</td>
<td>Noida</td>
<td>1991</td>
<td>Thermoware</td>
<td>11.3</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>2</td>
<td>Anmol Plast</td>
<td>Delhi</td>
<td>1991</td>
<td>Thermoware</td>
<td>10.6</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>3</td>
<td>Atul Marketing</td>
<td>Delhi</td>
<td>1992</td>
<td>Thermoware</td>
<td>6.5</td>
<td>1 LPD - Local</td>
</tr>
<tr>
<td>4</td>
<td>Balaji Plastics</td>
<td>Delhi</td>
<td>1987</td>
<td>Thermoware</td>
<td>8.0</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>5</td>
<td>CL Plastics</td>
<td>Delhi</td>
<td>1988</td>
<td>Thermoware</td>
<td>11.0</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>6</td>
<td>Indus Plast</td>
<td>Sahranpur</td>
<td>1990</td>
<td>Thermoware</td>
<td>9.8</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>7</td>
<td>Jupiter Engineering</td>
<td>Vapi</td>
<td>1991</td>
<td>Thermoware</td>
<td>9.5</td>
<td>1 LPD - Cannon</td>
</tr>
<tr>
<td>8</td>
<td>Mukesh Plastic Engineering</td>
<td>Delhi</td>
<td>1984</td>
<td>Thermoware</td>
<td>8.5</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>9</td>
<td>Neelam Plastic Industries</td>
<td>Mumbai</td>
<td>1973</td>
<td>Thermoware</td>
<td>9.6</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>10</td>
<td>Payal Products</td>
<td>Delhi</td>
<td>1987</td>
<td>Thermoware</td>
<td>9.2</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>11</td>
<td>Pradeep Polymers</td>
<td>Delhi</td>
<td>1993</td>
<td>Thermoware</td>
<td>10.7</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>12</td>
<td>Thermoplast Industries</td>
<td>Mumbai</td>
<td>1995</td>
<td>Thermoware</td>
<td>11.8</td>
<td>1 LPD - Local</td>
</tr>
</tbody>
</table>

TOTAL 116.5 12 LPDs

Table A.3: Rigid foam (spray/insitu insulation) sub-sector

<table>
<thead>
<tr>
<th>No</th>
<th>Enterprise name</th>
<th>Location</th>
<th>Year established</th>
<th>Products</th>
<th>CFC Consumption (MT)</th>
<th>Baseline equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alpha Insulation</td>
<td>Ahmedabad</td>
<td>1991</td>
<td>Spray/Insitu</td>
<td>6.5</td>
<td>1 HPD – Polycraf</td>
</tr>
<tr>
<td>2</td>
<td>Amijit Enterprises</td>
<td>Mumbai</td>
<td>1994</td>
<td>Spray/Insitu</td>
<td>5.8</td>
<td>1 HPD – Polycraft</td>
</tr>
<tr>
<td>3</td>
<td>Bright Insulations</td>
<td>Delhi</td>
<td>1979</td>
<td>Spray/Insitu</td>
<td>7.6</td>
<td>1 HPD – Polycraft</td>
</tr>
<tr>
<td>4</td>
<td>Enecon Engineers</td>
<td>Mumbai</td>
<td>1987</td>
<td>Spray/Insitu</td>
<td>7.5</td>
<td>1 HPD – Polycraft</td>
</tr>
<tr>
<td>5</td>
<td>Insulations India</td>
<td>Vapi</td>
<td>1988</td>
<td>Spray/Insitu</td>
<td>9.5</td>
<td>1 HPD – Gusmer</td>
</tr>
<tr>
<td>6</td>
<td>Insultech Enterprises</td>
<td>Yamunangr</td>
<td>1989</td>
<td>Spray/Insitu</td>
<td>6.5</td>
<td>1 HPD – Polycraft</td>
</tr>
<tr>
<td>7</td>
<td>Jaya Enterprises</td>
<td>Mumbai</td>
<td>1995</td>
<td>Spray/Insitu</td>
<td>8.4</td>
<td>1 HPD – Gusmer</td>
</tr>
<tr>
<td>8</td>
<td>Kwalality Insulations</td>
<td>Delhi</td>
<td>1990</td>
<td>Spray/Insitu</td>
<td>8.5</td>
<td>1 HPD – Polycraft</td>
</tr>
<tr>
<td>9</td>
<td>Narmada Insulations</td>
<td>Delhi</td>
<td>1993</td>
<td>Spray/Insitu</td>
<td>10.5</td>
<td>1 HPD – Polycraft</td>
</tr>
<tr>
<td>10</td>
<td>Om Insulations</td>
<td>Mumbai</td>
<td>1995</td>
<td>Spray/Insitu</td>
<td>8.0</td>
<td>1 HPD – Gusmer</td>
</tr>
<tr>
<td>11</td>
<td>Pravin Enterprises</td>
<td>Vadodara</td>
<td>1991</td>
<td>Spray/Insitu</td>
<td>8.5</td>
<td>1 HPD – Polycraft</td>
</tr>
<tr>
<td>12</td>
<td>Professional Insulations</td>
<td>Gurgaon</td>
<td>1990</td>
<td>Spray/Insitu</td>
<td>10.8</td>
<td>3 HPD – Gusmer</td>
</tr>
<tr>
<td>13</td>
<td>SD Polyurethane Enterp</td>
<td>Ghaziabad</td>
<td>1987</td>
<td>Spray/Insitu</td>
<td>6.6</td>
<td>1 HPD - Polycraft</td>
</tr>
<tr>
<td>14</td>
<td>Witco</td>
<td>Vadodara</td>
<td>1993</td>
<td>Spray/Insitu</td>
<td>9.5</td>
<td>1 LPD – Klowpur</td>
</tr>
</tbody>
</table>

TOTAL 114.2 15 HPDs, 1 LPD
Table A.4: Rigid foam (SMEs) sub-sector

<table>
<thead>
<tr>
<th>No</th>
<th>Enterprise name</th>
<th>Location</th>
<th>Year established</th>
<th>Products</th>
<th>CFC Consumption (MT)</th>
<th>Baseline equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advance FRP</td>
<td>Mumbai</td>
<td>1983</td>
<td>RPUF General</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>2</td>
<td>AG Insulators</td>
<td>Noida</td>
<td>1994</td>
<td>RPUF General</td>
<td>2.1</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>3</td>
<td>Arci Engineers</td>
<td>Mumbai</td>
<td>1985</td>
<td>RPUF General</td>
<td>2.4</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>4</td>
<td>Babylon Plast</td>
<td>Mumbai</td>
<td>1995</td>
<td>Thermoware</td>
<td>2.4</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>5</td>
<td>Beegee Enterprises</td>
<td>Dadanagar</td>
<td>1993</td>
<td>Thermoware</td>
<td>1.9</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>6</td>
<td>Bhagwati Plastics</td>
<td>Delhi</td>
<td>1993</td>
<td>Thermoware</td>
<td>2.3</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>7</td>
<td>Bharat Traders</td>
<td>Mumbai</td>
<td>1992</td>
<td>RPUF General</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>8</td>
<td>Bhooapaty Associates</td>
<td>Chennai</td>
<td>1986</td>
<td>RPUF General</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>9</td>
<td>Chemisol Industries</td>
<td>Vapi</td>
<td>1991</td>
<td>RPUF General</td>
<td>2.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>10</td>
<td>Citizen Industries</td>
<td>Ahmedabad</td>
<td>1991</td>
<td>Thermoware</td>
<td>2.2</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>11</td>
<td>Craftway Engineers</td>
<td>Mumbai</td>
<td>1990</td>
<td>Thermoware</td>
<td>2.4</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>12</td>
<td>Eaphael Industries</td>
<td>Delhi</td>
<td>1981</td>
<td>Thermoware</td>
<td>2.6</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>13</td>
<td>Emcee</td>
<td>Ludhiana</td>
<td>1981</td>
<td>RPUF General</td>
<td>2.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>14</td>
<td>Ethos Systems</td>
<td>Ahmedabad</td>
<td>1995</td>
<td>RPUF General</td>
<td>2.2</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>15</td>
<td>Gautam Industries</td>
<td>Delhi</td>
<td>1991</td>
<td>Thermoware</td>
<td>2.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>16</td>
<td>Gem Ply Systems</td>
<td>Mumbai</td>
<td>1993</td>
<td>RPUF General</td>
<td>2.9</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>17</td>
<td>HPN Industries</td>
<td>Bangalore</td>
<td>1991</td>
<td>RPUF General</td>
<td>2.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>18</td>
<td>Jain Plast</td>
<td>Mumbai</td>
<td>1994</td>
<td>Thermoware</td>
<td>2.4</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>19</td>
<td>Jay Vee Cee Corporation</td>
<td>Mumbai</td>
<td>1995</td>
<td>RPUF General</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>20</td>
<td>Jonex Rubber Industries</td>
<td>Jalandhar</td>
<td>1989</td>
<td>RPUF General</td>
<td>2.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>21</td>
<td>Malabar Thermoware</td>
<td>Bangalore</td>
<td>1994</td>
<td>Thermoware</td>
<td>3.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>22</td>
<td>Mayur Extrusions</td>
<td>Sarigam</td>
<td>1992</td>
<td>Thermoware</td>
<td>3.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>23</td>
<td>Modern Flask</td>
<td>Mumbai</td>
<td>1990</td>
<td>Thermoware</td>
<td>2.4</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>24</td>
<td>Nissan Doors</td>
<td>Mumbai</td>
<td>1985</td>
<td>RPUF General</td>
<td>2.2</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>25</td>
<td>Palmline Plastics</td>
<td>Mumbai</td>
<td>1994</td>
<td>Thermoware</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>26</td>
<td>Pawan Procast</td>
<td>Mumbai</td>
<td>1995</td>
<td>RPUF General</td>
<td>1.8</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>27</td>
<td>Polyfoam Industries</td>
<td>Mumbai</td>
<td>1995</td>
<td>RPUF General</td>
<td>1.8</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>28</td>
<td>Ram Enterprises</td>
<td>Bangalore</td>
<td>1994</td>
<td>RPUF General</td>
<td>2.2</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>29</td>
<td>Reliance Engineers</td>
<td>Mumbai</td>
<td>1987</td>
<td>RPUF General</td>
<td>2.4</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>30</td>
<td>Sanjay Metals</td>
<td>Mumbai</td>
<td>1994</td>
<td>Thermoware</td>
<td>2.2</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>31</td>
<td>Sharda Construction</td>
<td>Mumbai</td>
<td>1994</td>
<td>RPUF General</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>32</td>
<td>Sharp Industries</td>
<td>Mumbai</td>
<td>1989</td>
<td>RPUF General</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>33</td>
<td>Sheth Fabricators</td>
<td>Mumbai</td>
<td>1992</td>
<td>RPUF General</td>
<td>2.8</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>34</td>
<td>Shreya Insulations</td>
<td>Bilimora</td>
<td>1990</td>
<td>RPUF General</td>
<td>2.7</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>35</td>
<td>SM Polymers</td>
<td>Faridabad</td>
<td>1994</td>
<td>RPUF General</td>
<td>2.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>36</td>
<td>Spark Allied Industries</td>
<td>Bangalore</td>
<td>1992</td>
<td>RPUF General</td>
<td>2.2</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>37</td>
<td>SS Enterprises</td>
<td>Mumbai</td>
<td>1995</td>
<td>Thermoware</td>
<td>1.7</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>38</td>
<td>Sri Venkateshwara Ind</td>
<td>Bangalore</td>
<td>1995</td>
<td>RPUF General</td>
<td>2.0</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>39</td>
<td>Toshiba Industries</td>
<td>Daman</td>
<td>1994</td>
<td>RPUF General</td>
<td>2.7</td>
<td>Hand mixing</td>
</tr>
<tr>
<td>40</td>
<td>Tristar</td>
<td>Mumbai</td>
<td>1994</td>
<td>RPUF General</td>
<td>2.5</td>
<td>Hand mixing</td>
</tr>
</tbody>
</table>

TOTAL | 94.1 | No Foam Dispensers |
Table A.5: Flexible Molded/Integral Skin foam sub-sector

<table>
<thead>
<tr>
<th>No</th>
<th>Enterprise name</th>
<th>Year established</th>
<th>Products</th>
<th>CFC Consumption (MT)</th>
<th>Baseline equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABH Industries Valsad</td>
<td>1994</td>
<td>FMF</td>
<td>4.5</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>2</td>
<td>APL Corporation Chennai</td>
<td>1994</td>
<td>FMF/ISF</td>
<td>7.5</td>
<td>2 LPD – Cannon/SAIP</td>
</tr>
<tr>
<td>3</td>
<td>AS Polymers Ambala</td>
<td>1994</td>
<td>FMF</td>
<td>6.0</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>4</td>
<td>Bhutani Industries Gurgaon</td>
<td>1994</td>
<td>FMF</td>
<td>10.5</td>
<td>1 LPD – Cannon</td>
</tr>
<tr>
<td>5</td>
<td>Crypton Industries Calcutta</td>
<td>1991</td>
<td>FMF/ISF</td>
<td>7.5</td>
<td>1 HPD – Hennecke</td>
</tr>
<tr>
<td>6</td>
<td>Durotex Polymers Coimbatore</td>
<td>1993</td>
<td>FMF</td>
<td>4.8</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>7</td>
<td>Foam India Tiruchirapali</td>
<td>1994</td>
<td>FMF</td>
<td>9.5</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>8</td>
<td>Foam Products Bangalore</td>
<td>1984</td>
<td>FMF</td>
<td>5.4</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>9</td>
<td>Gopsy Rubber Industries Mumbai</td>
<td>1990</td>
<td>FMF</td>
<td>4.8</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>10</td>
<td>Indrayani Udyog Nagpur</td>
<td>1994</td>
<td>FMF</td>
<td>12.5</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>11</td>
<td>Jindal Petrofoams Ambala</td>
<td>1994</td>
<td>FMF</td>
<td>4.5</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>12</td>
<td>Joginder Singh Ludhiana</td>
<td>1965</td>
<td>FMF</td>
<td>6.0</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>13</td>
<td>Koyas Polymers Coimbatore</td>
<td>1971</td>
<td>FMF</td>
<td>11.0</td>
<td>1 LPD – Elastogran</td>
</tr>
<tr>
<td>14</td>
<td>Kvik Thermofoam Mumbai</td>
<td>1990</td>
<td>FMF</td>
<td>8.3</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>15</td>
<td>Lux Autofoam Coimbatore</td>
<td>1994</td>
<td>FMF</td>
<td>6.6</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>16</td>
<td>National Polymers Mumbai</td>
<td>1992</td>
<td>FMF</td>
<td>4.0</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>17</td>
<td>Omega Lining Coimbatore</td>
<td>1992</td>
<td>FMF</td>
<td>13.5</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>18</td>
<td>Poly Crafts Delhi</td>
<td>1987</td>
<td>FMF</td>
<td>10.4</td>
<td>1 LPD – Hennecke</td>
</tr>
<tr>
<td>19</td>
<td>Premier Industries Medak</td>
<td>1995</td>
<td>FMF</td>
<td>14.1</td>
<td>1 LPD/Local, 1 HPD Henn</td>
</tr>
<tr>
<td>20</td>
<td>Pyarelal Foams Meerut</td>
<td>1994</td>
<td>FMF</td>
<td>12.0</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>21</td>
<td>Sigma Industries Delhi</td>
<td>1993</td>
<td>FMF/ISF</td>
<td>13.6</td>
<td>1 LPD – KWI</td>
</tr>
<tr>
<td>22</td>
<td>Siddhi Vinayak Polymers Jalandhar</td>
<td>1994</td>
<td>FMF</td>
<td>12.4</td>
<td>2 LPD – OMS/Indipuf</td>
</tr>
<tr>
<td>23</td>
<td>Sunpreet Engineers Chennai</td>
<td>1995</td>
<td>FMF</td>
<td>4.8</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>24</td>
<td>Surbhi Polymers Delhi</td>
<td>1993</td>
<td>FMF</td>
<td>9.7</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>25</td>
<td>Transval Manufacturing Chennai</td>
<td>1994</td>
<td>FMF</td>
<td>4.8</td>
<td>1 LPD – Local</td>
</tr>
<tr>
<td>26</td>
<td>Urethane Specialties Hyderabad</td>
<td>1993</td>
<td>FMF</td>
<td>9.0</td>
<td>1 LPD – OMS</td>
</tr>
<tr>
<td>27</td>
<td>Vam Polyplast Hyderabad</td>
<td>1989</td>
<td>FMF</td>
<td>8.0</td>
<td>1 LPD – Graco</td>
</tr>
<tr>
<td>28</td>
<td>Vicktra Polyfoams Chennai</td>
<td>1995</td>
<td>FMF</td>
<td>4.6</td>
<td>1 LPD – Local</td>
</tr>
</tbody>
</table>

TOTAL: 230.3 28 LPDs, 2 HPDs

NOTES: 1. All enterprises mentioned as established in 1995 in Tables 2.1 to 2.5, commenced operations prior to July 1995.
2. It has been ensured that there has been no double counting of enterprises.

Table A.6: Summary

<table>
<thead>
<tr>
<th>Sub-sector</th>
<th>Number of Enterprises</th>
<th>CFC Consumption (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid foam (general insulation)</td>
<td>5</td>
<td>56.7</td>
</tr>
<tr>
<td>Rigid foam (thermoware)</td>
<td>12</td>
<td>116.5</td>
</tr>
<tr>
<td>Rigid foam (spray/insitu)</td>
<td>14</td>
<td>114.2</td>
</tr>
<tr>
<td>Rigid foam (SMEs)</td>
<td>40</td>
<td>94.1</td>
</tr>
<tr>
<td>Flexible molded & integral skin foam</td>
<td>28</td>
<td>230.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>99</td>
<td>611.8</td>
</tr>
</tbody>
</table>
项目评价表
印度

行业：加工剂 本行业的 ODS 使用量（2000 年）：4,067 ODP 吨
次级行业成本效益阈值：不适用

项目名称：

(a) 在氯化橡胶次级行业淘汰 CTC 消费的全行业计划

<table>
<thead>
<tr>
<th>项目数据</th>
<th>流程转换</th>
</tr>
</thead>
<tbody>
<tr>
<td>企业消费量 (ODP 吨)</td>
<td></td>
</tr>
<tr>
<td>项目影响 (ODP 吨)</td>
<td>382.00</td>
</tr>
<tr>
<td>项目期限 (月)</td>
<td>36</td>
</tr>
<tr>
<td>原申请经费数额 (美元)</td>
<td>18,066,845</td>
</tr>
<tr>
<td>最后项目费用 (美元)：</td>
<td></td>
</tr>
<tr>
<td>增支资本费用 (a)</td>
<td></td>
</tr>
<tr>
<td>酌处资金 (b)</td>
<td></td>
</tr>
<tr>
<td>增支经营费用 (c)</td>
<td></td>
</tr>
<tr>
<td>项目费用总额 (a + b + c)</td>
<td>22,533,153</td>
</tr>
<tr>
<td>地方所有权 (%)</td>
<td>100%</td>
</tr>
<tr>
<td>出口比重 (%)</td>
<td>30.4%</td>
</tr>
<tr>
<td>申请经费数额 (美元)</td>
<td>18,066,845</td>
</tr>
<tr>
<td>成本效益值 (美元/公斤)</td>
<td>47.30</td>
</tr>
<tr>
<td>对应出资是否已经确认？</td>
<td></td>
</tr>
<tr>
<td>国家协调机构</td>
<td></td>
</tr>
<tr>
<td>执行机构</td>
<td></td>
</tr>
<tr>
<td>秘书处的建议：</td>
<td></td>
</tr>
<tr>
<td>建议供货额 (美元)</td>
<td></td>
</tr>
<tr>
<td>项目影响 (ODP 吨)</td>
<td></td>
</tr>
<tr>
<td>成本效益值 (美元/公斤)</td>
<td></td>
</tr>
<tr>
<td>执行机构支助费 (美元)</td>
<td></td>
</tr>
<tr>
<td>多边基金的费用总额 (美元)</td>
<td></td>
</tr>
</tbody>
</table>
项目说明

在氯化橡胶次级行业淘汰 CTC 消费的全行业计划

目标

28. 世界银行以印度政府的名义向第三十七次会议提交了在印度氯化橡胶生产中全部淘汰用作反应剂的 CTC 次级行业计划草案。

29. 世界银行通知说，该次级行业计划的目的是在印度氯化橡胶行业全部淘汰余留的大约 382 ODP 吨 CTC 消费，并避免 2,878 ODP 吨的预计 CTC 消费。

30. 该计划提议在 Rishiroop Rubber International Limited (RRIL) 和 Rishiroop Polymers Limited (RPL) 这两个工厂转换流程，并关闭两个较小的工厂。所提议的总计 19,942,183 美元的转换和关闭增支费用的成本效益值为 52.20 美元/公斤。印度第五座氯化橡胶厂 249 ODP 吨 CTC 的淘汰工作在第 34 次会议批准的一个项目中获得处理。

31. 提案全文载于本文件附件（附件一）。

组成部分和执行

32. 如上文所述，该计划有两个组成部分，即工厂关闭和工厂转换。这两个部分将于 2004 年底之前执行。该次级行业计划不包括任何补充技术援助或管理活动。该计划显示，次级行业计划将由印度的氯化橡胶生产商执行。

增支费用

33. 该提案计算了四种选择，即工厂关闭、工厂转换、降低排放和工业合理化的费用。计算，最后一种选择同包括全部设备能力的两座工厂关闭和两座工厂转换相结合，是成本效益最佳的选择。

34. 为关闭提案中注明总生产能力为每年 450 吨、实际产量每年 71 吨的两座工厂，申请的增支费用为 2,909,947 美元。申请的费用是根据利润损失和劳工补偿计算的。在计算利润损失时采用 1995 年至 1997 年的生产基准、直至 2010 年的不受限制增长（12%）、3%的通货膨胀和 7%的利润收入贴现率。

35. 为转换提案中注明总生产能力为每年 5050 吨、实际年产量为 507 吨的两座工厂，申请的增支费用为 18,260,359 美元。这是考虑到出口调整之前的费用，此种情况适用于整个次级行业计划。

36. 该计划包括单独的 RRIL 和 RPL 转换分项目提案。这两项提案的依据是替换大多数流程设备和基础结构，RRIL 的资本费用为 15,496,083 美元，RPL 的资本费用为 2,612,447 美元。增支经营费用 161,82 美元只涉及 RRIL，因为自 1995 年以来，RPL 一直停产。
37. 印度政府要求在如何使用和分配拟议的经费方面享有充分的灵活性，只要按计划淘汰该次级行业的 CTC 消耗。

秘书长的评论和建议

评论

38. 第 33 次会议为世界银行和工发组织拨款 200,000 美元，用于拟订一项印度加工剂行业的次级行业计划。世界银行将负责协助印度制修订一项包括所有次级行业的总行业计划，以提交执行委员会第 35 次会议。请世界银行说明该总行业计划的编写情况。

39. 该提案涉及一个加工剂次级行业，即氯化橡胶行业的淘汰。除了在生产氯化橡胶过程中消耗 CTC 的三个企业淘汰此种物质的消费之外，没有年度执行绩效协定，不寻求分批付款。因此这不是一个目前理解的行业计划。因为该提案基本上是转换一个生产厂家，即 RRIL（见下文）和关闭两个小厂家的转换项目，所以灵活性的概念在这里可能不适用。世界银行认为，行业计划的所有特点都包括在内，因此该提案应该享有同其他行业计划相同的灵活性。

氯化橡胶市场：项目文件第 1 至第 3 章

40. 这几章的主要目的看来是确定印度氯化橡胶的全部生产能力（其历史上最好的利用率为 24%，目前的利用率为 12%）应符合资助条件。使用 CTC 生产的氯化橡胶通常含有少量 CTC。该文件提出，《蒙特利尔议定书》是造成与含 CTC 氯化橡胶用户缺乏联系的原因。该文件还进一步提出，在完成生产过程转换并可提供无 CTC 氯化橡胶之后，该产品市场将增加，印度理论上能够提供的所有生产能力都将得到利用。

41. 《蒙特利尔议定书》控制生产和消费，但不控制最终使用。因此第一项提议是不正确的。由于利用其他产品的替代技术的采用，氯化橡胶市场萎缩。认为该市场的萎缩可以逆转，提供无 CTC 氯化橡胶将振兴市场，此种说法纯属猜测。秘书处给世界银行的意见是，为迎合这些可能出现的情况而提供多边基金资源来看不符合条件。世界银行提供了进一步的理由支持其立场，即无 CTC 氯化橡胶市场的增长是可能的，并提出，一个非第 5 条生产商提议扩大自己的生产能力。

转换 Rishiroop Polymers Limited (RPL) 公司

42. 自从 2000 年 3 月世界银行提交 RPL 和 ROL 这两个公司的转换提案以来，该企业的状况没有改变。后来秘书处提出，因为在前三年没有消耗，所以 RPL 不符合资助条件。世界银行对项目作了修订并提交第 34 次会议，取消了 RPL 的资助申请，但前提是该企业可能重新开始生产并在今后提出项目。如本提案所显示，仍然没有任何消耗，所以秘书处通知世界银行，RPL 的转换仍然不符合资助条件。世界银行提议，如果转换不符合资助条件，则应考虑关闭这项选择。但是，因为没有消耗，所以秘书处认为关闭费用也不符合资助条件。
关闭 Pauraj 和 Tarak 两公司

43. 根据缔约方第 X/14 号决定，关闭费用符合资助条件。必须仔细考虑这些费用的基础。例如，根据印度达到的最高生产总量算出“不受限制的增支”，再使用在此基础上得出的产量估计数似乎不适当。目前非常低的生产水平有各种原因，包括上文提到的采用其他技术和适用于个别生产企业的条件。例如在 Pauraj，生产急速下降，现在每年产量仅 33 吨。但是在 Tarak，过去三年的平均产量已为 140 吨。这表明，一个工厂的适存性可能不同于另外一个工厂。在此情况下，对利润损失的补偿应该有区别。世界银行表示它愿意更详细地讨论这些问题，如有需要，将为现场访问提供便利，以确定计算关闭补偿金的条件。

工业合理化

44. 秘书处指出，将此种合理化说成是针对《蒙特利尔议定书》控制措施的反应可能不准确。这也是对产能过剩的经济上的反应。在先前关于产能明显过剩的其他国家，例如中国，的决定中，执行委员会指出，一个次级行业或一组项目的增支费用应以合理工业产能的转换为基础，即以工业合理化发生之后仍存在的企业符合合同的增支费用为基础。

45. 在这方面，如该计划表 6（英文第 13 页）所显示，氯化橡胶的理论生产能力是目前生产水平的八倍多，是 1993—94 年建立 6050 吨生产能力以来曾经达到的最高生产水平的四倍多。关闭 Pauraj 和 Tarak 两厂将使总生产能力从每年 6050 吨降低到每年 5600 吨，仍然是目前生产水平的 7.5 倍。

46. 秘书处给世界银行的意见是，根据氯化橡胶市场今后可能因为出现无 CTC 产品而增长此种销售向执行委员会建议，多边基金应为此种过剩产能提供转换补偿，这是不现实的。在这方面，该计划应考虑第 32/59(c)号决定的规定。该决定指出，如果以后提交 Rishiruop Rubber International Limited 公司的转换项目，在确定项目费用时应考虑到该次级行业工业合理化产生的成本效益。

47. 世界银行提到所提供的关于国际氯化橡胶市场的资料，并指出，世界银行的意见是，将氯化橡胶市场今后的增长视为猜测这一结论是不准确的。

转换项目

48. RRL 项目的增支费用必须根据多边基金的规则和政策来确定。这将包括考虑到技术升级和向非第 5 条国家出口 55.8%。此外还须考虑到费用分担问题，考虑到整个行业的产能过剩。

49. RRL 提案中的现有资料并没有为评估增支费用提供任何基础。请世界银行提供有关 RRL 目前（基准）装置的全面技术资料，特别是有关工厂布局、流程和辅助设备现状（同时铭记一贯的低利用率）、工厂准备替换的部分和重新利用的部分的资料。
随后的讨论

50. 关于 RRIL 转换费用的计算，世界银行说，因为供替换的技术与 Rishiroop Organics Limited 公司采用的技术（经第 34 次会议批准）相同，所以全部有关资料已经提交给秘书处。在此基础上，秘书处给世界银行的意见是，秘书处可以支持向执行委员会提议批准资助，但以 ROL 项目的成本效益值为基础，并扣除技术转让费，因为已经通过 ROL 项目支出了技术转让费。调整后的成本效益值为 7.38 美元/公斤。在考虑到 ROL 已批准的淘汰量之后，该成本效益值适用于印度剩余的所有氯化橡胶厂过去三年的平均总 CTC 消耗量。该消耗数字为 275.2 ODP 吨。由此得出的增支费用水平为 2,030,976 美元。秘书处指出，这种方法将为仍在生产但是已提议关闭的工厂提供资助，资助水平相当于它们若进行转换而获得同样的成本效益值，这样将为个别企业决定关闭还是转换提供最大程度的灵活性。

51. 世界银行认为这种方法并没有反映与工厂关闭有关的符合资助条件的费用，而只是反映了印度该行业发生的增支费用总数中的一部分。此外，这种方法也没有反映为满足今后对无 CTC 氯化橡胶的需求而必须具备的生产能力。世界银行希望同秘书处进一步探讨该问题，以便确保该行业计划下的资助水平将允许印度该行业根据今后的需求平衡其生产能力。

52. 将向项目审查小组委员会通报任何进一步的发展情况。

建议

53. 待定。