PROJECT PROPOSAL: CUBA

This document consists of the comments and recommendations of the Fund Secretariat in the following project proposal:

Aerosol

- Phase-out of CFC consumption in the manufacture of aerosol metered dose inhalers (MDIs)
PROJECT EVALUATION SHEET
CUBA

Sub-sector cost-effectiveness thresholds: n/a

Project Title:

(a) Phase-out of CFC consumption in the manufacture of aerosol metered dose inhalers (MDIs)

<table>
<thead>
<tr>
<th>Project Data</th>
<th>Phase-out of CFC consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise consumption (ODP tonnes)</td>
<td>109.1</td>
</tr>
<tr>
<td>Project impact (ODP tonnes)</td>
<td>109.1</td>
</tr>
<tr>
<td>Project duration (months)</td>
<td>32</td>
</tr>
<tr>
<td>Initial amount requested (US $)</td>
<td>8,209,853</td>
</tr>
<tr>
<td>Final project cost (US $):</td>
<td></td>
</tr>
<tr>
<td>National MDI Transition strategy (a)</td>
<td>190,000</td>
</tr>
<tr>
<td>Incremental capital cost conversion (b)</td>
<td>1,830,000</td>
</tr>
<tr>
<td>Incremental operating cost (c)</td>
<td>2,900,000</td>
</tr>
<tr>
<td>Technology transfer fees (d)</td>
<td>1,040,000</td>
</tr>
<tr>
<td>Total project cost (a+b+c+d)</td>
<td>5,960,000</td>
</tr>
<tr>
<td>Local ownership (%)</td>
<td>100%</td>
</tr>
<tr>
<td>Export component (%)</td>
<td>0%</td>
</tr>
<tr>
<td>Amount requested (US $)</td>
<td>5,960,000</td>
</tr>
<tr>
<td>Cost effectiveness (US $/kg.)</td>
<td>n/a</td>
</tr>
<tr>
<td>Counterpart funding confirmed?</td>
<td>n/a</td>
</tr>
<tr>
<td>National coordinating agency</td>
<td>Oficina Técnica de Ozono</td>
</tr>
<tr>
<td>Implementing agency</td>
<td>UNDP</td>
</tr>
</tbody>
</table>

Secretariat’s Recommendations

Amount recommended (US $)	
Project impact (ODP tonnes)	
Cost effectiveness (US $/kg)	
Implementing agency support cost (US $)	
Total cost to Multilateral Fund (US $)	
PROJECT DESCRIPTION

Background

1. The Government of Cuba submitted to the 38th Meeting of the Executive Committee a transition strategy for the elimination of CFC-based metered dose inhalers (MDIs) together with an investment project proposal for the phase-out of 109.1 ODP tonnes of CFC-11 and CFC-12 used in the manufacture of MDIs at Laboratorio Farmacéutico Julio Trigo López, the only manufacturer of aerosol MDIs in Cuba (UNEP/OzL.Pro/ExCom/38/29).

MDI transitional strategy

2. The Government of Cuba prepared a detailed national strategy for the phase out of CFC MDIs and the introduction of non-CFC MDIs, based on the following principles:

 (a) Patients’ health should be the first priority in the transition period;

 (b) All stakeholders should manage the transition to ensure that patient access to appropriate treatment is not interrupted;

 (c) Transparency and efficacy in the authorisation and follow-up of new products in the market; and

 (d) Implementation of an education programme with participation from health professionals, relevant ministries, pharmaceutical companies, and the community.

3. The cost for the implementation of transition strategy is US $190,000.

Investment project proposal

4. Laboratorio Farmacéutico Julio Trigo López currently consumes both CFC-11 and CFC-12 in the manufacture of salbutamol and beclomethasone CFC MDI.

5. Laboratorio Farmacéutico Julio Trigo López has decided to stay with the MDI as the drug delivery system. For salbutamol, it is proposing to base the formulation on HFC-134a alone and for beclomethasone, it is proposing dissolution in ethyl alcohol and the use of HFC-134a propellant. The implementation of the selected technologies require technology transfer from established enterprises who own the right to transfer such technology without infringement of any intellectual property related to drug molecule, method of formulation, design of the metering valve or actuator, or filling process.

6. The replacement technologies require different production processes compared to those used for the existing CFC MDI products. The total capital cost of the conversion, excluding costs associated to the technology transfer, has been estimated at US $1,835,400. The annual incremental operating costs for the conversion of salbutamol and beclomethasone have been estimated at US $1,155,520 and US $260,640, respectively. Incremental operating costs are requested for a period of two years.
7. The Government of Cuba is proposing to phase-out the use of CFCs in MDIs in 2005 through implementation of the national transition strategy and the conversion of the CFC-MDI manufacturer to HFC-134a MDIs. Once the project is completed, the Government of Cuba will prohibit the use of CFCs in all aerosol products, including MDIs.

Decision by the Executive Committee

8. At its 38th Meeting, the Executive Committee considered the MDI transitional strategy for Cuba and the investment project proposal for the conversion of MDI production line at Laboratorio Farmacéutico Julio Trigo López, and decided (Decision 38/52):

(a) To take note of the Government of Cuba’s transitional strategy to non-CFC MDIs and the associated investment project for the phase-out of CFCs used in the manufacture of MDIs at Laboratorio Farmacéutico Julio Trigo López;

(b) To note that the capital cost of the project, as revised, amounts to US $1,488,000 (including US $430,000 for trials, pilot scale production, clinical trials, product stability, technical supervision, inspections and certification of completion);

(c) To request UNDP to continue assisting the Government of Cuba in finalization of the transitional strategy and the identification of a potential provider of the HFC-134a MDI technology and resubmit the transitional strategy and the investment project once a provider has been identified and selected by the Government of Cuba to the 39th Meeting of the Executive Committee;

(d) To maintain the transitional strategy to non-CFC MDIs and the investment project for the phase-out of CFCs in MDIs in Cuba in the 2002 UNDP business plan;

(e) To note the importance of the project for Cuba and commend the efforts of Cuba, the Secretariat, and UNDP directed to achieving the transfer of the required technology; and

(f) To further request that those efforts be maintained with a view to having the resubmission, referred to in subparagraph (c) above, take place at the 39th Meeting of the Executive Committee.

Actions taken by UNDP after the 38th Meeting

9. Subsequently, UNDP submitted to the 39th Meeting of the Executive Committee a report on the activities undertaken, and in particular the identification of potential providers for non-CFC MDI technologies (UNEP/OzL.Pro/ExCom/39/23). The report indicated, inter alia, that

(a) An independent company producing HFA MDIs submitted an initial proposal for the technology transfer at a cost of US $500,000 and a 10 per cent royalty on the price of the MDI unit produced. The company would be able to supply HFA MDIs directly to Cuba during the transition period;
(b) UNDP also discussed the potential of using dry powder inhalers (DPIs), which do not require a CFC or HFA propellant, as a not-in-kind replacement technology. One company in the United Kingdom has developed DPI (Clickhaler) for both salbutamol and beclomethasone; and.

(c) A preliminary cost for technology transfer and equipment is US $1.6 million; the estimated time for equipment installation and commissioning is 12 months. This cost does not include the operating cost arising from the supply of empty Clickhaler units which is about US $2.10/unit. As an alternative to the establishment of a local filling, the company could supply a finished product directly to Cuba.

10. The Executive Committee, after considering the report by UNDP, decided to approve an additional US $20,000 to complete preparation of the project proposal, including technology transfer, and requested the Chair of the Executive Committee and the Fund Secretariat to continue to support the efforts of UNDP in locating the technology that needed to be transferred to further development of the investment project to phase out CFCs MDIs in Cuba (Decision 39/31).

Project proposals submitted to the 41st Meeting

11. Since the 39th Meeting of the Executive Committee, UNDP reviewed three project proposals from three different technology providers. An overview of the technology transfer offers from the three providers is presented below.

Technology provider 1

12. The enterprise will provide the technology for the conversion of CFC-MDI salbutamol and CFC-MDI beclomethasone to HFA-MDI products. The replacement products will be salbutamol and beclomethasone.

13. The technology transfer includes the design of the production plant; a list of engineering services required to establish the production line; assistance in the installation of production equipment (once the plant has been adapted and the equipment has arrived to the plant); production of three batches for each one of the products (salbutamol and beclomethasone) in the presence of Cuban technicians; assistance in the validation of the product produced in the batches; testing and validation of the testing of the batches produced; control checks to comply with the established quality standard; hand-over of the HFA production line; and documentation to assist on registration of the product and clinical trials.

14. The total cost of the project (including the transitional strategy) based on the proposal submitted by the technology provider 1 is presented below:
15. The enterprise will provide the technology for the conversion of CFC MDI salbutamol and CFC MDI beclomethasone to HFA MDI products. The replacement products will be salbutamol and fluticasone.

16. The technology transfer includes assistance to access relevant data in support of regulatory approval; access to dossier compilation, facility design and equipment installation; sourcing of components; clinical trial management/execution; and facility and equipment validation. Detailed specifications will be provided to ensure the equipment is adequate for its intended purpose. The equipment will be sourced from the United Kingdom and will be fully inspected and tested prior to transport and installation at the manufacturing site.

17. The technology provider will assume responsibility for all engineering and validation activities during the project implementation; will liaise directly with the production facility to ensure a seamless transition to non-CFC technology; will provide technical assistance, project management, layouts and installation qualification; and will provide assistance (help support) for the retrofitting of HFA capability for the existing CFC filling lines, once the new facility is operational.

18. The suppliers of the equipment will provide technical support during the building, testing and installation of the equipment; and formal (documented) training at the production site. Service contracts will be negotiated prior to placement of any order to ensure on-going technical support after procurement.

19. The total cost of the project (including the transitional strategy) based on the proposal submitted by the technology provider 2 is presented below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitional strategy</td>
<td>US $190,000</td>
</tr>
<tr>
<td>Capital cost</td>
<td>US $1,830,490</td>
</tr>
<tr>
<td>Operating cost (NPV for 4 years)</td>
<td>US $5,199,448</td>
</tr>
<tr>
<td>Technology transfer fees</td>
<td>US $5,000,000</td>
</tr>
<tr>
<td>Total cost</td>
<td>US $12,219,938</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>US $112.01/kg</td>
</tr>
</tbody>
</table>

Technology Provider 3

20. The enterprise will provide the technology for the conversion of CFC MDI salbutamol and CFC MDI beclomethasone to DPI. The DPI device manufactured in Europe will be supplied...
to Cuba. A new filling line will be installed in Cuba for the production of formulations and filling into the DPI device.

21. The technology provider will identify suitable suppliers for supplying active products (pharmaceuticals and lactose carriers) for Cuba; conducting sourcing; all necessary release testing and the finished product shipped to distribution. After completing the training programme by the technology provider, the local staff of the production facility will be responsible for the release of the product on the market.

22. The technology transfer will include advice on required analytical equipment, transferring analytical methods to laboratory manager (using local transfer procedures); specifications, supply, installation and qualification of manufacturing technology capable of pilot-scale through commercial production (including bridging and scale-up studies in Europe) and removing pilot-scale equipment on completion of stability trials; pilot scale stability studies, commercial scale equipments, supply of equipment and limited spare parts; installation of the equipment and services in the production facility; supply of technical documents and manuals, hand-over services from equipment suppliers and experienced manufacturing personnel to facilitate start-up and production of initial 10 lots of each product variant.

23. The total cost of the project (including the transitional strategy) based on the proposal submitted by the technology provider is presented below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitional strategy</td>
<td>190,000</td>
</tr>
<tr>
<td>Capital cost</td>
<td>3,744,000</td>
</tr>
<tr>
<td>Operating cost (NPV for 4 years)</td>
<td>12,918,676</td>
</tr>
<tr>
<td>Technology transfer fees</td>
<td>1,230,400</td>
</tr>
<tr>
<td>Total cost</td>
<td>18,083,076</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>165.74/kg</td>
</tr>
</tbody>
</table>

Additional considerations applicable to the three providers

24. Laboratorio Julio Trigo López will be responsible for all the engineering work required to adapt the production plant to suitable standard requirements of the HFA or DPI filling line. The Government of Cuba is committed to ensure, in a period no more than six months, the preparation of a plant complying with all the specifications required (e.g., space, temperature, humidity and others) by the technology provider to produce HFA MDI or DPI.

SECRETARIAT’S COMMENTS AND RECOMMENDATION

COMMENTS

25. Pursuant to Decision 38/52 of the Executive Committee, the Fund Secretariat continued to provide assistance to UNDP for the completion and submission of the investment project for the conversion of the MDI CFC production in Cuba. Specifically:
(a) The Secretariat assisted UNDP in logistical arrangements for sending CFC-MDI samples to a testing laboratory to determine the quality of the product manufactured in Cuba (cascade impactor test);

(b) Reviewing information on ODS related issues received by the Secretariat on a daily basis, the Secretariat noted a MDI manufacturing company that had the non-CFC MDI technology and advised UNDP accordingly. Subsequently, UNDP contacted the company who prepared a project proposal and submitted it to UNDP; and

(c) Upon an invitation by UNDP, the Secretariat attended two meetings with two potential technology providers and UNDP to discuss general issues regarding the project proposal, in particular the cost and conditions for technology transfer. As a result of these meetings, the two potential providers of the technology visited Cuba. Subsequently, sound project proposals were prepared from these two technology providers and submitted to UNDP.

26. UNDP submitted three project proposals for the conversion of the CFC-MDI production line by three different technology providers. Based on the technology proposed and the total cost of the conversion, the project proposal submitted by technology provider 2 was selected. A copy of the project proposal is attached.

27. Subsequently, the Fund Secretariat and UNDP held detailed discussions on issues related to the costs of the technology transfer and operating costs (since the level of funding for the equipment was agreed at the 38th Meeting). At the conclusion of the discussion, the Secretariat and UNDP agreed on the total cost of the project, on the understanding that the Government of Cuba would have flexibility on the use the funds available. The project cost breakdown is as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitional strategy</td>
<td>US $190,000</td>
</tr>
<tr>
<td>Capital cost</td>
<td>US $1,830,000</td>
</tr>
<tr>
<td>Operating cost</td>
<td>US $2,900,000</td>
</tr>
<tr>
<td>Technology transfer fees</td>
<td>US $1,040,000</td>
</tr>
<tr>
<td>Total cost</td>
<td>US $5,960,000</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>US $54.63/kg</td>
</tr>
</tbody>
</table>

Use of MDIs in Article 5 countries

28. At its 37th Meeting, the Executive Committee considered Draft guidelines for metered dose inhaler (MDI) Projects (document UNEP/OzL.Pro/ExCom/37/58). According to the most recent available information (as it was indicated in the document), CFC MDIs units used in Article 5 countries were estimated to number between 45 and 60 million in 2001.

29. Based on the data available and considering a cost-effectiveness of US $54.63/kg, the Secretariat attempted to get a preliminary estimate of the possible cost to the Multilateral Fund for the conversion of CFC-MDI in Article 5 countries, after excluding foreign owned manufacturing plants.
30. The estimated cost is US $14.2 million as shown in the table below:

<table>
<thead>
<tr>
<th>Country</th>
<th>MDI units</th>
<th>CFC (ODP tonnes)*</th>
<th>Foreign ownership</th>
<th>Total cost (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>3,340,000</td>
<td>66.8</td>
<td>87%</td>
<td>474,407</td>
</tr>
<tr>
<td>Brazil</td>
<td>6,130,000</td>
<td>122.6</td>
<td>99%</td>
<td>66,976</td>
</tr>
<tr>
<td>China</td>
<td>12,890,000</td>
<td>257.8</td>
<td>12%</td>
<td>12,393,580</td>
</tr>
<tr>
<td>Mexico</td>
<td>1,880,000</td>
<td>37.6</td>
<td>98%</td>
<td>41,082</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1,980,000</td>
<td>39.6</td>
<td>85%</td>
<td>324,502</td>
</tr>
<tr>
<td>Philippines</td>
<td>1,200,000</td>
<td>24</td>
<td>94%</td>
<td>78,667</td>
</tr>
<tr>
<td>Turkey</td>
<td>2,470,000</td>
<td>49.4</td>
<td>95%</td>
<td>134,936</td>
</tr>
<tr>
<td>Uruguay</td>
<td>1,270,000</td>
<td>25.4</td>
<td>50%</td>
<td>693,801</td>
</tr>
<tr>
<td>Total</td>
<td>31,160,000</td>
<td>623.2</td>
<td></td>
<td>14,207,951</td>
</tr>
</tbody>
</table>

(*) Based on 20 gm of CFC-12 per MDI

31. It should be noted that this is likely to be a maximum cost estimate. The minimum could be around 20 per cent of this amount. No hard data is held by the Secretariat, however the MDI industry has expanded rapidly in the past decade and the eligible production capacity existing on 25 July 1995 (Decision 17/7) could be as low as 20 per cent of current capacity. This was reported to the Secretariat to be the case in one very large consuming country that decided, eventually, not to seek compensation for MDI conversion within its remaining eligible consumption.

RECOMMENDATION

32. The project proposal is submitted for individual consideration of the Executive Committee.
CUBA

Phase-out of CFC consumption in the Manufacture of Aerosol Metered Dose Inhalers (MDIs) in Cuba

United Nations Development Programme

(Revised)
November 2003
MULTILATERAL FUND FOR THE IMPLEMENTATION OF THE MONTREAL PROTOCOL
ON SUBSTANCES THAT DEPLETE THE OZONE LAYER

PROJECT COVER SHEET

COUNTRY: CUBA
IMPLEMENTING AGENCY: UNDP
PROJECT TITLE: Phase-out of CFC consumption in the Manufacture of Aerosol Metered Dose Inhalers (MDIs) in Cuba
PROJECT IN CURRENT BUSINESS PLAN: Yes (project submitted in 2002)
SECTOR/ Sub-sector: AEROSOL/ Pharmaceutical Aerosols

CONSUMPTION:
ODS Consumption in SECTOR (2001): 137.3 ODP tons (28.2 ODP tons to be phased-out from ongoing project)
ODS Consumption in Sub-Sector (2001): 109.1 ODP tons
BASELINE (1995-1997 average): 625 ODP tons
CURRENT CONSUMPTION (2001): 504 ODP tons
PROJECT IMPACT: 109.1 ODP tons
PROJECT DURATION: 32 months after MLF Approval

Costs of Conversion:
National MDI Transition Strategy (Annex 7) US$ 190,000
Incremental Capital Cost Conversion Project: US$ 1,830,000
Incremental Operating Cost (2 years): US$ 2,900,000
Total Project Cost: (Excluding Technology Transfer fees for conversion project/license) US$ 4,920,000
Technology Transfer Fees
Total Cost US$ 1,040,000
LOCAL OWNERSHIP: 100%
EXPORT COMPONENT: 0%
REQUESTED GRANT: US$ 5,960,000 (US$ 3,759,800 from 2002 and 2003 BP; the remaining from 2004)
AGENCY SUPPORT COSTS: US$ 447,000
TOTAL COST TO THE MLF: US$ 6,407,000
COST-EFFECTIVENESS: (No Sector CE Threshold)
STATUS OF COUNTERPART FUNDING: Enterprise Commitment Received
PROJECT MONITORING MILESTONES: Included in Project Document
NATIONAL COORDINATING BODY: Oficina Tecnica de Ozono

PROJECT SUMMARY

The objectives of this project are (a) to phase-out the consumption of 109.1 ODP tonnes of CFC 11 and CFC 12 used in the manufacture of Aerosol Metered Dose Inhalers (MDIs) in Cuba, and (b) to manage the transition from CFC based MDIs to CFC-free MDIs in the country.
This involves conversion to CFC free MDI manufacturing technology at Laboratorio Farmaceutico “Julio Trigo Lopez”, the only manufacturer of aerosol MDIs in Cuba, and the dissemination of a National MDI transition strategy based on an awareness campaign to educate doctors prescribing MDIs on the timing and reasons for the transition from CFC MDIs to CFC-free MDIs.

To implement the selected replacement technologies, Laboratorio Farmacéutico “Julio Trigo López” will require technology transfer from one, or more, established multinational enterprises that have experience in the development and manufacture of MDIs using CFC free technologies, and who has the right to transfer such technology without infringement of any intellectual property related to either the drug molecule, the method of formulation, the design of the metering valve or actuator, or the filling process. This proposal addresses the conversion to a manufacturing facility of MDI using HFC 134a. The proposal is presented with the corresponding incremental capital costs; incremental operational costs and technology transfer costs.

As far as the HFC 134a technology, the transition process from CFC MDIs to HFC MDIs in Cuba requires that for a period of some time there will need to be production of both CFC MDIs, and HFC MDIs. As a result, completely new HFC MDI manufacturing facilities of equivalent capacity are required or Cuba will have to run campaign production to supply patients during this period. The project covers an HFC MDI Manufacturing Facility of similar production capacity to the baseline facility (>6 million units per annum). Funds are also required for materials that will be consumed in, Equipment Proving Trials, Pilot Scale Production, Clinical Trials, Product Stability, as well as for Product Stability Testing, Clinical Trials, Testing, and Product Registration and Overall Project Supervision. The total cost of this is US$ 1,830,000. The technology transfer fees are being requested by the provider at a level of US$ 1,040,000.

For the technology transition the funding requested for implementation of the National MDI transition strategy, necessary as a support measure to ensure a successful transition is US$190,000.

Capital costs had been discussed and agreed with the Secretariat before the 38th Executive Committee Meeting based on an analysis of possible equipment needs for HFC 134a technology current available, without going into specific providers and their equipment requirements, as at that time none had been identified. Therefore, in deepening the discussions with identified providers, UNDP has found out that specific needs are different for each technology provider. This is reflected in the change in capital cost from the previous project document. The period used for the calculation of the Incremental Operational Cost was 2 years. The total IOC for the project are US$ 2,900,000.

It must be noted that MLF funding of the CFC-free MDI technology transfer costs is essential to successful project completion. Flexibility in the use of the allocated funds is also required.

IMPACT OF THE PROJECT ON THE COUNTRY’S MONTREAL PROTOCOL OBLIGATIONS

While Cuba has approved projects that are still ongoing as of August 2002, these will phase-out only 32.6 ODP tonnes of CFCs. To meet the Montreal Protocol compliance level of 313 ODP tonnes of annual CFC consumption in 2005, Cuba must then eliminate a further 155 ODP tonnes from the 2001 level of consumption of 504 ODP tonnes. This project will eliminate the use of 109.1 ODP tons, and as such it is critical to helping Cuba to comply with Montreal Protocol Annex A Group I measures.
TABLE OF CONTENTS

1. PROJECT OBJECTIVES ... 5
2. SECTOR BACKGROUND ... 5
3. ENTERPRISE BASELINE DATA ... 8
4. PROJECT DESCRIPTION .. 10
 4.1 NATIONAL CFC MDI MANUFACTURING SECTOR CONVERSION PROJECT 10
 4.1.1 Overview & Selection Of Replacement Technologies For CFC MDIs 10
 4.1.2 Process Implications Of The Selected Replacement Technologies 15
 4.2 CUBAN TRANSITION STRATEGY FOR THE ELIMINATION MDIs WITH CFC, AND
 THE INTRODUCTION OF THE REPLACEMENT CFC-FREE MDIs. 16
 4.2.1 Principles, Objectives, & Approach Of The Cuban National Transition Strategy .. 16
 4.2.2 Costs of the Cuban National Transition Strategy ... 19
5. PROJECT COSTS ... 21
 5.1 INCREMENTAL CAPITAL COSTS - CFC MDI CONVERSION PROJECT 21
 5.2 TECHNOLOGY TRANSFER COSTS – CFC MDI CONVERSION PROJECT 22
 5.3 INCREMENTAL COSTS – NATIONAL MDI TRANSITION STRATEGY 24
 5.4 INCREMENTAL OPERATING COSTS - CFC MDI CONVERSION PROJECT 24
 5.5 INCREMENTAL OPERATING BENEFITS - CFC MDI CONVERSION PROJECT 24
 5.6. TOTAL PROJECT INCREMENTAL COSTS (excluding MDI Technology Transfer) .. 24
 5.7. PROJECT COST EFFECTIVENESS & FUNDING REQUESTED FROM THE MLF 24
6. FINANCING PLAN .. 25
7. PROJECT IMPACT .. 25
8. PROJECT IMPLEMENTATION ... 25
 8.1 MANAGEMENT .. 25
 8.2 TENTATIVE PROJECT SCHEDULE ... 25
 8.3 MILESTONES FOR MONITORING PROJECT IMPLEMENTATION 27
ANNEX 1 - ENTERPRISE BASELINE DATA ... 29
ANNEX 2 – REPLACEMENT EQUIPMENT INCREMENTAL CAPITAL COSTS 32
ANNEX 3 – INCREMENTAL OPERATING COSTS .. 40
ANNEX 4 – LIST OF EQUIPMENT TO BE RETROFITTED, DESTROYED, OR RENDERED
 UNUSABLE WITH ODS, DURING PROJECT IMPLEMENTATION, OR FOLLOWING
 SUCCESSFUL PROJECT COMPLETION .. 42
ANNEX 5 – ENTERPRISE LETTER OF COMMITMENT .. 44
ANNEX 6 - ASTHMA AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) 45
ANNEX 7- CUBAN TRANSITION STRATEGY FOR THE ELIMINATION OF MDIs WITH CFC,
 AND THE INTRODUCTION OF THE REPLACEMENT CFC-FREE MDIs 48
ANNEX 8 - PHARMACEUTICAL QUALITY CFC & HFC PROPELLANTS, AVAILABILITY &
 SPECIFICATIONS FOR USE IN MDIs ... 49
PROJECT OF THE GOVERNMENT OF CUBA

PHASE-OUT OF CFC CONSUMPTION IN THE MANUFACTURE OF AEROSOL METERED DOSE INHALERS (MDIs) IN CUBA BY CONVERSION TO CFC FREE TECHNOLOGY AT LABORATORIO FARMACEUTICA “JULIO TRIGO LOPEZ” TO MANAGE THE RESULTING TRANSITION TO CFC FREE MDI TECHNOLOGY IN THE COUNTRY

1. PROJECT OBJECTIVES

The joint objectives of this project are (a) to phase-out the use of CFC 11 and CFC 12 in the manufacture of salbutamol Aerosol Metered Dose Inhalers (MDIs) in Cuba, which represent 80% of the consumption in the MDI sector, and (b) to manage the transition from CFC based MDIs to CFC Free MDIs in the country. This involves conversion of Laboratorio Farmaceutica “Julio Trigo Lopez”, the only manufacturer of aerosol MDIs in Cuba, and a dissemination of the National MDI transition strategy based on an awareness campaign to educate doctors prescribing MDIs on the timing and reasons for the transition from CFC MDIs to CFC-free MDIs.

2. SECTOR BACKGROUND

The Country Programme (CP), based on the 1991 ODS consumption data, was approved in July 1993. Under the CP the Government proposed to eliminate 35% of CFC consumption between 1993 and 1996 by implementing training programmes for service technicians in the refrigeration sector. The remaining consumption was to be phased out by other activities by the year 2010.

Cuba does not produce CFCs, and total demand is met through imports. CFC consumption during the period 1990 – 2001 was as illustrated in the following table:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC</td>
<td>tonnes</td>
</tr>
<tr>
<td>1990</td>
<td>778</td>
<td>324</td>
<td>122</td>
<td>122</td>
<td>150</td>
<td>546</td>
<td>664</td>
<td>663</td>
<td>531</td>
<td>571</td>
<td>534</td>
<td>504</td>
</tr>
</tbody>
</table>

As the data in the table shows, in practice CFC consumption declined by 84% between 1990 and 1993, but then increased more than 4-fold between 1993 and 1996. This pattern of consumption is unrelated to activities in the Country Programme; it simply reflects the difficult economic situation in the country.

According to the CP, in 1991 some 307 ODP tonnes (95%) of the 324 ODP tonnes of CFC consumption in Cuba was in the refrigeration and air-conditioning sector, and the majority of this was for service and repair activities. The balance of 17 ODP tonnes was in the aerosol sector. There was no other CFC consumption for foam, or solvent, applications.
In 2001, the reported total CFC consumption was 504 ODP tons, of which 372 ODP tons (74%) was in the refrigeration service sector, with the balance of some 132 ODP tonnes for aerosols.

Cuba’s average consumption level of Annex A Group I CFCs for the three years 1995 – 1997, the “Baseline Consumption” on which the Montreal Protocol (MP) consumption compliance levels are based, was 625 ODP tonnes. In 1999, in order to ensure compliance with the first MP control step, Cuba froze the imports of Annex A Group I substances at the baseline level. However, differences in consumption levels between 1997 and 2001 continue to be strongly influenced by the economic situation rather more than actions to eliminate CFC consumption.

To meet its obligations under the Montreal Protocol, Cuba must now ensure that the annual consumption of Annex A Group I substances (CFCs 11, 12, 113, 114, and 115) does not exceed the “Baseline Consumption” of 625 ODP tonnes for each of the years 2000 through 2004. Thereafter, the maximum permitted levels of annual CFC consumption for compliance with the Montreal Protocol are as follows:

2005 – 2006 (50% of the “Baseline Consumption”) – 313 ODP tonnes.
2007 – 2010 (15% of the “Baseline Consumption”) – 94 ODP tonnes.
2010 Zero consumption.

While the historical levels of consumption have been dictated by the economic situation in the country, the following graph serves to illustrate the trend of consumption in ODP tonnes of Annex A Group I CFCs in Cuba, and the consumption control levels for compliance with the Montreal Protocol;
Graph 1. CFC Consumption Trend: Actual and MP Compliance Levels

While Cuba has approved projects that are still ongoing as of June 2002, these will phase-out only 32.6 ODP tonnes of CFCs. To meet the MP compliance level of 313 ODP tonnes of annual CFC consumption in 2005, Cuba must then eliminate a further 155 ODP tonnes from the 2001 level of consumption of 504 ODP tonnes.

Pursuant to ExCom Decision 35/57, Cuba has selected Option 1 for determining the starting point for implementation of it’s national aggregate CFC consumption (Montreal Protocol Compliance Baseline minus CFC projects approved but not yet implemented as of 31 December 1997, and minus CFC projects approved for phase-out between 1998 and 2001). The remaining CFC consumption eligible for funding resulting from Cuba’s selection of Option 1 under ExCom Decision 35/57 is then 585.7 ODP tonnes.

Cuba is then eligible to receive additional MLF assistance, and such assistance appears essential if Cuba is to meet the 2005 CFC consumption compliance level of 313 ODP tonnes.

Aerosol Sector Background

Two distinct sub-sectors make up the aerosol sector in Cuba:

- **The Industrial/Technical Aerosol Manufacturing Sector** – This is comprised of a single production facility founded in 1983 and located in the Centro de Investigaciones y Desarrollo Tecnico (CIDT) under the jurisdiction of the Ministry of Interior. A project to eliminate 28.2 ODP tonnes of CFC 12 at this facility by conversion to the use of hydrocarbon propellant was approved at the 34th ExCom Meeting in July 2001. This project is ongoing.

- **The Pharmaceutical Aerosol Manufacturing Sector** – This again is a State controlled activity under the Ministry of Public Health (MINSAP). It is concerned solely with the manufacture of metered dose inhalers, predominately bronchodilator products for the treatment of asthma, allergic respiratory diseases, and chronic obstructive pulmonary disease (COPD).

Production of MDIs in Cuba began in 1993 because of the high incidence of asthma and COPD in the population, coupled with the need to both substitute imports, and introduce new medications. According to data from the Ministerio de Salud Publica (MINSAP) the incidence of these diseases in the Cuban population is as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>10%</td>
</tr>
<tr>
<td>Allergic Respiratory Disease</td>
<td>8%</td>
</tr>
<tr>
<td>COPD</td>
<td>5%</td>
</tr>
</tbody>
</table>

The first MDI manufacturing facility with a capacity of 8,500 units/day was installed at Laboratorio Farmacéutico "Andrés Berro" belonging to the enterprise "Reinaldo Gutiérrez". Manufacturing capacity was increased to 24,242 units/day in 1994 by the installation of additional MDI manufacturing facilities at Laboratorio Farmacéutico "Julio Trigo López", also belonging to the enterprise "Reinaldo Gutiérrez".
In 2000, the aforementioned MDI manufacturing facilities were combined into a single operation at Laboratorio Farmacéutico "Julio Trigo López" with a resultant increase in MDI production capacity to 30,000 units/day.

MDI production in 2001 totalled 6 million MDIs, made up of 4.8 million (80%) Salbutamol 200 dose bronchodilator MDIs, and 1.2 million (20%) Beclomethasone 50 µg controller medication MDIs.

CFC consumption for the manufacture of aerosol MDIs has increased steadily since 1993, while consumption of CFCs for the production of industrial, technical, and consumer aerosol products such as insecticides, has been erratic due to influence by the state of the Cuban economy. Recent CFC consumption is more meaningful than historic consumption, and the data obtained for preparation of the CIDT aerosol conversion project in 2001, and the data obtained for preparation of this aerosol MDI conversion project proposal are summarized in the following table:

<table>
<thead>
<tr>
<th>Sub-sector</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002 (Estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial/Technical Aerosols</td>
<td>3.5</td>
<td>15.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Aerosols MDIs</td>
<td>74.3</td>
<td>84.7</td>
<td>109.1</td>
<td>109.1</td>
</tr>
<tr>
<td>Total</td>
<td>77.8</td>
<td>99.7</td>
<td>134.1</td>
<td>134.1</td>
</tr>
</tbody>
</table>

Considering that all of the remaining CFC consumption in the refrigeration and air-conditioning sector is for repair and service activities where reduction in consumption is difficult to achieve without equipment replacement or retrofit, this growth trend in CFC consumption in the aerosol MDI manufacturing sector further emphasises the need for MLF assistance for a conversion project for the MDI sector to enable Cuba to meet the MP CFC consumption compliance target in 2005.

3. ENTERPRISE BASELINE DATA

Aerosol MDI manufacturing activities began in Cuba in 1993 at the Laboratorio Farmacéutico "Andrés Berro" belonging to the enterprise "Reinaldo Gutiérrez". Additional manufacturing capacity was installed in 1994 at the Laboratorio Farmacéutico "Julio Trigo López", also belonging to the enterprise "Reinaldo Gutiérrez". These separate MDI production facilities were amalgamated in 2000 into a single MDI manufacturing operation based in the Laboratorio Farmacéutico "Julio Trigo López" in Havana.

The enterprise "Reinaldo Gutiérrez" is 100% Cuban owned, and is comprised of several laboratorios farmacéuticos as illustrated in the following enterprise structural organisation chart.
Initially, only a 200 dose aerosol MDI based on the short acting b-agonist Salbutamol was produced, but a second, controller medication product, a 50 µg MDI based on Beclomethasone was introduced in 1999. In 2001, the 200 dose Salbutamol MDI accounted for 80% of the total production of 6 million units.

Laboratorio Farmacéutico "Julio Trigo López" currently consumes both CFC-11 and CFC-12 in the manufacture of aerosol MDIs. The CFC-11 is used for the preparation of a “suspension slurry” of the active ingredient to facilitate filling the precise quantity into the open aerosol MDI container, after which the MDI aerosol container is closed with the aerosol metering valve, and the CFC-12 that acts as the aerosol “propellant” is injected into the aerosol container under pressure through the metering valve. This production process applies for both the existing 200 dose Salbutamol and the 50 µg Beclomethasone CFC MDI products.

Presently there are no licensing, technical assistance, or technology transfer agreements relating to MDI manufacture. The MDI formulation technology is based on the enterprises own research work, and the aerosol filling technology was obtained from the well known aerosol filling equipment supplier, Pamasol Willi Mader AG of Switzerland.

All production is sold within Cuba. Current CFC MDI production capacity at the Laboratorio Farmacéutico "Julio Trigo López" is 30,000 units/day, around 6.9 million units/year, is based on a single production line. Remodelling of the production area, and incorporation of the second production line based on the equipment from Laboratorio Farmacéutico "Andrés Berro", is almost complete and this will increase production capacity to around 8 million units/year. This is necessary to satisfy National demand; as well as to be able to introduce new MDI based medication products into the Cuban market. It must be emphasized that the production of CFC MDIs at Laboratorio Farmacéutico "Julio Trigo López" is intended to, and does, satisfy total demand for MDIs in Cuba, and there are no imports of MDIs.

The MDI manufacturing facilities at Laboratorio Farmacéutico "Julio Trigo López" are well managed and all production complies with the “Buenas Prácticas de Producción de Medicamentos”.

More detailed baseline data on Laboratorio Farmacéutico "Julio Trigo López" and the MDI manufacturing facilities is provided in ANNEX 1.
4. PROJECT DESCRIPTION

The requested MLF funding is to address two distinct needs, conversion of CFC MDI production in Cuba to CFC Free MDI filling technology, and separately the development, implementation, and management of a National transition strategy related to the phase-out of CFC MDIs, and the introduction of the replacement technology.

4.1 NATIONAL CFC MDI MANUFACTURING SECTOR CONVERSION PROJECT

4.1.1 Overview & Selection Of Replacement Technologies For CFC MDIs

Metered dose inhalers, which were introduced in the 1950’s, have been a safe, efficient and reliable device to treat respiratory diseases such as asthma and COPD. No other inhalation therapy has been so widely used for the treatment of reversible diseases of human airways, and the MDI is used in approximately 80% of the patients with asthma.

Metered-dose inhaler products contain therapeutically active ingredients dissolved or suspended in a propellant, a mixture of propellants, or a mixture of solvents, propellants, and/or other excipients in compact pressurized aerosol dispensers. An MDI product may discharge up to several hundred metered doses of one or more drug substances. Depending on the product, each actuation may contain from a few micrograms (mcg) up to milligrams (mg) of the active ingredients delivered in a volume typically between 25 and 100 microliters.

Although similar in many features to other drug products, MDIs have unique differences with respect to formulation, container, closure, manufacturing, in-process and final controls, and stability. These differences need to be considered during product development because they can affect the ability of the product to deliver reproducible doses to patients over the life of the product as well as the product’s efficacy. Some of the unique features of MDIs are listed below:

- The container, the valve, the actuator, the formulation, any associated accessories (e.g., spacers), and protective packaging collectively constitute the drug product. Unlike most other drug products, the dosing and performance and, therefore, the clinical efficacy of a MDI are dependent on the design of these components.

- The fraction of the formulation delivered to the patient consists of a mixture of micronized (or solubilized) drug substance in the desired physical form, which may be within a residual matrix of oily excipient material, propellant, and/or solvent.

- The aerosolization of materials from a pressurized container is a complex and rapid sequence of events. When the content of the metering chamber is released, it undergoes volume expansion and forms a mixture of gas and liquid before being discharged as a jet through the orifice of the actuator. Within the expanding jet, the droplets undergo a series of processes. Subsequent to the aerosolization and dispersion of the drug product into a multitude of droplets, and during the propulsion of these droplets from the actuator to the biological target, the drug substance particles in the droplets become progressively more concentrated due to rapid evaporation of the volatile propellant components.
MDIs possess numerous characteristics that, taken together, set them apart from other inhalation delivery systems, such as dry power inhalers and nebulisers. The table below provides a comparison between these three types of inhalers.

<table>
<thead>
<tr>
<th>Type of inhaler</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Metered Dose Inhalers (MDI) | • Simple actuation system
• Reliable accurate dose regardless of the patient's breathing capacity
• Compact and portable
• Easy use
• Economical
• The stability of the medication is not affected by ambient temperature or humidity | • Mostly use CFCs as propellants
• The method of pressing and breathing requires coordination between actuation and breathing (breath-actuated systems do not have this drawback) |
| Dry Power Inhalers (DPI) | • No propellant used | • Drug release depends on the patients breathing capacity
• The inhaled fraction is reduced if the patient breath is directed into the system
• Relatively expensive |
| Nebulisers | • No special breathing coordination required
• Works with patients using mechanical ventilation
• Useful to administer new or less used drugs. | • Not portable
• Dependent on an electric supply
• Expensive
• Operation takes a long time
• Requires the use of preservatives to reduce risk of bacteria contamination |

MDIs are designed to provide a fine mist of medicament, generally with an aerodynamic particle size less than 5 microns, for inhalation directly to the airways for the treatment of respiratory diseases such as asthma or other chronic obstructive pulmonary disease (COPD).

The important features of MDIs is that they represent a cost-effective, tamper-proof, packaging form for safe and easy administration of the required dosage of medicament to dependent patients of all ages who, particularly in the case of asthma sufferers, generally need to achieve fast relieve from the disease symptoms.

CFC MDI manufacturing technology was developed based on a marriage of typical aerosol filling techniques and the established practices and standards of the pharmaceutical industry. While the selection and development of active ingredients and the design of metering valves for accurate dosage represented the difficult part in the development of the technology, the physical, chemical, and toxicological properties of CFC-11 and CFC-12 coupled with almost standard aerosol filling equipment and techniques, enabled the manufacture of MDI products that met all of the design requirements for effective medication delivery, and ease of use by patients.

The most common CFC MDI formulation based on Salbutamol is manufactured by using a typical aerosol filling method. The Salbutamol powder is mixed with a special surfactant (sorbitan triolate) and CFC-11 in stirred mixing vessel designed to produce and maintain a homogeneous suspension of the Salbutamol powder in the surfactant/CFC-11. This suspension is then accurately dosed in an aluminium monobloc aerosol container. After this the metering
valve is crimped on the monobloc container, and CFC-12 to act as the propellant for delivery of
the drug suspension in the required particle size, is introduced into the monobloc container
through the metering valve.

While the manufacturing process is relatively simple, it must be noted that the CFC-11 and
CFC-12 employed must manufactured to recognised pharmaceutical standards, and strict
quality control of all stages of the procurement and storage of materials and components, as
well as the manufacturing process, is required. Normally immediately after the addition of
the CFC-12 propellant the MDIs are then pressure tested, production batches are clearly identified
and quarantined for 1-3 months, before further testing, and finally release into the market.

The foregoing represents the basic CFC MDI manufacturing process employed by Laboratorio
Farmacéutico "Julio Trigo López" in Havana, Cuba.

Ideally then, the conversion of CFC MDIs to a CFC-free formulation would require zero-ODP
replacements for both CFC-11 and CFC-12 that possess similar physical, chemical, and
toxicological properties. However, replacements with such properties are not available. The
CFC MDI conversion process led by the established multinational pharmaceutical companies
has spawned new formulations, new manufacturing processes, as well as non-aerosol dry
powder inhalers (DPIs). Many of these products are the subject of intellectual property that
cover either the drug molecule, the method of formulation, the device (in the case of DPI) or the
filling process.

Both HFC-134a and HFC-227ea have been developed as zero-ODP replacements for CFC-12
to serve as the propellant function in CFC-free MDIs, and in some products also as the CFC-11
replacement. However, differences in the physical (e.g. boiling point) and chemical (e.g.
solubility) properties of these substances and the CFCs they replace, require changes to the
manufacturing process and equipment, as well as to seal materials used in both MDI valves and
manufacturing equipment.

HFC-134a and HFC-227ea, again manufactured to recognised pharmaceutical standards, are
commercially available and are now widely used throughout non-Article 5 countries.

The options for CFC MDI conversion to CFC-free formulations (not in any order of importance
as applied globally) can be briefly summarised as follows:

A. **HFC/Ethanol MDIs (Pressure Filled)** - The medicament drug suspension is manufactured
basically by similar technology as used for the CFC MDI version, but the CFC-11 used as
the liquid phase of the suspension and to solubilise the surfactant, as well as to modify the
final vapour pressure of the MDI formulation, is replaced by ethyl alcohol (ethanol). However, due to the different solubility properties of ethanol and CFC-11 the surfactant has
to be replaced by a new surfactant chemical. This suspension is then, as previously
described metered in the aluminium monobloc container. The propellant CFC-12 is replaced
by HFC-134a. As the spray/particle size characteristics of the ethanol/HFC-134a MDI
formulation are different to those of the CFC MDI version, the valve and actuator have to be
redesigned to achieve the required spray and particle size characteristics for efficacious
dosage. Some products use HFC-227ea as the propellant instead of HFC-134a.

B. **HFC MDIs (Pressure Filled)** - The MDI is manufactured in such a way that HFC-134a
serves as the replacement for both CFC-11 and CFC-12. The medicament drug suspension
is manufactured only with HFC-134a, but since HFC-134a has a boiling point of -26.2 °C and it is gaseous at normal pressure, the drug/HFC-134a suspension must be prepared under pressure of about 6 bar in a special mixing vessel. The prepared drug suspension in HFC-134a is then directly metered under pressure through a special design valve into the aluminium monobloc container by means of a diaphragm filler. In some cases part of the required amount of HFC 134a may be pressure filled through the valve after the drug/HFC134a suspension has filled in order to clear the valve of suspension.

C. **HFC MDIs (Cold Filled)** The HFC MDI is again manufactured in such a way that HFC-134a serves as the replacement for CFC-12. In some cases CFC-11 is replaced with ethanol. In this process the complete CFC-free MDI formulation is prepared in a special mixing vessel, chilled to a temperature of around -40 °C, then filled as a liquid suspension into the open aluminium monobloc container, followed immediately by the metering valve being crimped in place to close the container.

D. **Single-Dose DPI** - One form of Dry-Powder Inhaler (DPI) developed as a replacement for CFC aerosol MDIs is the single-dose powder inhaler. In this type of device a powder-containing capsule is placed in a holder. The capsule is opened within the device and the powder is inhaled. The capsule must be discarded after use and a new capsule inserted for the next dose.

E. **Multi-Dose DPI** - Another form of DPI is the multi-dose powder inhaler. This can deliver many doses without a need to refill the device after each inhalation. The multi-dose DPI typically either have the drug in a blister (as a discrete dose) or they contain drug that is metered from a drug reservoir. Current products vary between four and two hundred doses.

F. **Nebulisers** - These devices produce aerosols by agitation of solutions of the medication, and they account for 1-2% of the global market. They are generally reserved for patients with special needs, such as very young babies or patients with severe disease, who need much higher doses of active substance.

G. **Oral treatment** - This type of oral therapy is generally use as preventive treatment and may reduce the use of inhalers. Although the use of tablets for asthma patients may be of some value, it is highly unlikely that it will become a significant substitute for the current inhaled preventive therapy.

The first CFC-free MDI based on Salbutamol/HFC-134a was introduced in the UK in 1994. Today, Salbutamol/HFC-134a MDIs are approved and marketed in over 60 countries, including 30 Article 5 countries. It has been estimated that in 2001 global production of HFC based MDIs was over 100 million units, representing approximately 25% of total global MDI production, while multi-dose DPI production was over 70 million units.

Both HFC-134a MDI technology, and DPI technology, can therefore be considered as fully developed commercially, even though the technology may not be in the public domain.

The HFC based MDIs have a different taste and a different cooling effect from the traditional CFC MDIs. While physicians and patients need to be aware of these changes (and the reasons for them) and be well prepared to accept them, experience indicates that properly managed the change can be effected with minimal patient concerns.
DPIs are preferred by some patients because of their ease of use, but they do not represent a satisfactory therapeutic alternative to the pressurised MDI for all patients or for all drugs. DPI formulations either contain the active drug alone or have a carrier powder (e.g. lactose) mixed with the drug. The drug particles must be of sufficiently small aerodynamic diameter to make it to, and deposit on, the airways. Micronised dry powder can be inhaled and deposited in the airways effectively from DPIs by patients with adequate breathing capacity as they can pull sufficient air through the device. However, young children, some patients with severe asthma and elderly COPD patients, may not always be able to achieve adequate inspiratory flow to ensure optimal medication delivery from DPIs.

Selection of CFC MDI Replacement Technology

Laboratorio Farmacéutico "Julio Trigo López" has based the selection of the replacement technology for its current CFC MDI products on an evaluation of the following criteria:

- The specific needs of the Cuban population;
- The current CFC MDI products manufactured by Laboratorio Farmacéutico "Julio Trigo López" in Havana, Cuba;
- The existing experience and skills of the Laboratorio Farmacéutico "Julio Trigo López" personnel;
- The high incidence of asthma, allergic respiratory diseases, and chronic obstructive pulmonary disease (COPD) in all ages of the Cuban population;
- The familiarity of existing Cuban patients with the MDI design as a device for delivery of the required medication;
- The maturity and established commercialisation of HFC-134a based MDI technology;
- The established “Patient Acceptance” of CFC-free MDIs;
- HFC-134a price, product availability, and cost-effectiveness of the HFC-134a MDI formulation;
- The present, and short to medium term future, economic situation in Cuba.

Laboratorio Farmacéutico "Julio Trigo López" wishes to stay with the MDI as the drug delivery system, and the selected replacement technologies are as follows:

200 Dose Salbutamol CFC MDI - Laboratorio Farmacéutico "Julio Trigo López" wishes to be able to offer patients in Cuba a Salbutamol bronchodilator formulation developed commercially in Article 2 countries, based a formulation of Salbutamol in HFC-134a alone.

50 µg Beclomethasone CFC MDI - Laboratorio Farmacéutico "Julio Trigo López" wishes to convert this product to a CFC-free MDI based on a solution of Beclomethasone in ethyl alcohol (ethanol), and HFC-134a.

The total baseline consumption, including losses, in the year 2001, and the ODP tonnes that will be eliminated by this project, are shown in the following table:

<table>
<thead>
<tr>
<th>Enterprise</th>
<th>CFC-11 ODP tonnes eliminated</th>
<th>CFC-12 ODP tonnes eliminated</th>
<th>Total ODP tonnes eliminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratorio Farmacéutico "Julio Trigo López"</td>
<td>37.6</td>
<td>71.5</td>
<td>109.1</td>
</tr>
</tbody>
</table>
Technology Transfer

To implement the selected replacement technologies, Laboratorio Farmacéutico "Julio Trigo López" will require technology transfer from one, or more, established multinational enterprises that have experience in the manufacture of CFC-Free MDIs using alternative technologies and that have the right to transfer such technology without infringement of any intellectual property related to either the drug molecule, the method of formulation, the design of the metering valve or actuator, or the filling process.

It must be recognised that without such transfer of technology it would likely take Laboratorio Farmacéutico "Julio Trigo López" between 6 – 10 years to develop and obtain approval for CFC-free replacements for their current CFC MDIs. This timescale will likely result in Cuba’s non-compliance with its 2005 CFC consumption limits under the Montreal Protocol, but more seriously, it is likely to impact the production and availability of CFC MDIs in Cuba, with resultant adverse health consequences for the large numbers of the Cuban population that suffer from asthma, chronic obstructive pulmonary disease (COPD), and other lung diseases characterized by obstruction of airflow and shortness of breath. (See ANNEX 8).

The present project proposal therefore includes the analysis of one technology transfer option based on the offer received from a recognised laboratory of the sector. The alternative and its corresponding cost is described in the project document and is presented for consideration as the most appropriate for the Cuban case.

It is anticipated that an Independent Expert MDI Consultant will also be required to assist in project implementation and monitoring activities.

4.1.2 Process Implications Of The Selected Replacement Technologies

The selected replacement technologies require different production processes than those used at present for the existing CFC MDI products.

- The conversion of the 200 dose Salbutamol CFC MDI to an HFC MDI based on a suspension of Salbutamol in HFC-134a requires completely different production equipment. The HFC-134a will replace both the CFC-11 and CFC-12 in the CFC MDI formulation, but because HFC-134a is a gas at atmospheric pressure this will involve preparation of a “suspension slurry” of the Salbutamol in HFC-134a in a pressure vessel. Precisely measured amounts of the Salbutamol/HFC-134a “suspension slurry” will then be injected under pressure through a modified metering valve into the already closed aerosol MDI container. A further injection of HFC-134a will be made into the aerosol container through the metering valve to clear any of the Salbutamol/HFC-134a “suspension slurry” from the valve.

- The 50 μg Beclomethasone CFC MDI will be converted to a HFC MDI based on ethyl alcohol (ethanol) and HFC-134a. The process has similarities with the existing process in that precisely measured amounts of the Beclomethasone/ethanol mixture will be filled into the open aerosol MDI container, after which the MDI aerosol container will be closed with the aerosol metering valve, and the HFC-134a that acts as the aerosol “propellant” will be injected into the aerosol container under pressure through the metering valve.
While in other requests for MLF assistance for CFC conversion projects the retrofit of existing CFC using manufacturing equipment to be able to use the CFC replacement technology is always considered, in the case of this MDI project in Cuba, retrofit is not possible because of the poor compatibility of the 134a with existing seals and because of the new indexing method of filling.

As stated previously, the Cuban situation is unique as there are no imports of MDIs, and all MDI demand is met by local production. This is because of the economic situation in the country, and replacing local MDI production with imported MDI products while the existing manufacturing facilities are converted for use with CFC-Free technology (including retrofit of any parts that might be possible to retrofit) is not an option. The transition process from CFC MDIs to CFC-free MDIs in Cuba requires that for a period of some time there will need to be production of both CFC MDIs, and CFC-free MDIs. As a result, completely new CFC-free MDI manufacturing facilities of equivalent capacity are required. (Please refer also to Section 4.2 - CUBAN TRANSITION STRATEGY FOR THE ELIMINATION MDIs WITH CFC, AND THE INTRODUCTION OF THE REPLACEMENT CFC-FREE MDIs).

Details of the baseline equipment related to the manufacture of CFC MDIs at Laboratorio Farmacéutico "Julio Trigo López" are provided in ANNEX 1. This equipment will be dismantled and destroyed, or otherwise rendered unusable with CFCs, once the conversion to CFC-free MDI products has been successfully completed.

4.2 CUBAN TRANSITION STRATEGY FOR THE ELIMINATION MDIs WITH CFC, AND THE INTRODUCTION OF THE REPLACEMENT CFC-FREE MDIs.

Important Note: The detailed Cuban National Strategy for the phase-out of CFC MDIs, and the introduction of the replacement CFC-free MDIs is appended as ANNEX 7. The following is a summary of key points provided for convenience.

4.2.1 Principles, Objectives, & Approach Of The Cuban National Transition Strategy

Principles - There is consensus amongst all the stakeholders that the National transition strategy for the phase-out of CFC use in MDIs in Cuba should be based on the following principles:

- Patients’ health should be the first priority in the transition period. The patient is at the core of the transition.
- All interested parties should actively manage the transition to ensure the patient’s access to needed treatments is not interrupted.
- There must be transparency and efficacy in the authorization and follow-up of new products in the market.
- The strategy will focus on the development and implementation of an education programme with the active participation of all sectors, health professionals, Ministries, pharmaceutical companies, and the community.

In addition to these principles, the strategy may and should be able to encourage the elaboration and execution of a National programme to control Asthma and COPD, two diseases that due to their prevalence represent a key health concern in Cuba.
Objectives - The objective of this strategy is the phase out of the use of CFC MDIs according to a timetable and criteria previously agreed by all the stakeholders, and this implies the acceptance of these new products by both health professionals and patients.

The Cuban situation is unique with 100% of the National demand for MDIs being met by local manufacture by a State-owned enterprise. There are no imports of MDIs, and the intention is that this scenario should continue during, and after, the implementation of a CFC MDI conversion project to enable the local manufacture of CFC-free MDIs.

Both the National CFC MDI conversion project and the National transition strategy for the phase-out of CFC use in MDIs in Cuba are then inextricably linked. While the objective of the conversion project is also related to reducing CFC consumption and Cuba’s compliance with the obligations of the Montreal Protocol, the National transition strategy for the phase-out of CFC use in MDIs in Cuba cannot be implemented without implementation of the National CFC MDI conversion project, and vice versa. Because of the economic situation in Cuba, the implementation of both these projects is also dependent on MLF assistance.

Approach - The report of the Aerosol Technical Option Committee of the Montreal Protocol recognizes that there is no single strategy applicable to all countries for the phase-out of CFC MDIs. The process of transition to non-CFC alternatives is complex and involves the need for dialogue between health authorities, environmental agencies and other interested groups.

The Cuban situation is distinctly different from other countries and much simpler. There is only a single, State controlled, CFC MDI manufacturer that satisfies all National demand, and there are no imports of MDIs. The product range consists of only two MDI products, a Salbutamol bronchodilator product which accounts for 80% of production, with a Beclomethasone controller product making up the balance. This situation exists because of the Cuban economy, and is likely to continue for the foreseeable future. While new products are being examined, their introduction is not considered imminent.

The transition strategy has then been formulated based on the unique Cuban situation, and a timetable for CFC phase-out agreed with all stakeholders, and on a time scale compatible with the expected date for the local manufacture of CFC-free MDIs. This timetable will be monitored periodically and modifications will be made as necessary in the light of its effective application and the introduction of the CFC-free products.

CFC MDIs will be withdrawn from the market as soon as is feasible following the introduction of the CFC-free MDIs, and the period in which both CFC-free MDIs and CFC MDIs co-exist in the market should be limited.

The following factors have to be taken into consideration in setting the timetable for the phase-out CFC MDIs:

- Sufficient time for post-marketing surveillance data collection. Awareness and education activities should promote the practice amongst health professionals of reporting adverse reactions to the drug surveillance centres.

- Market acceptance of the new products. Awareness and education activities should promote the use of CFC-free MDIs amongst health professionals and patients.
The time necessary for the approval, the level of funds approved, and implementation of the National CFC MDI conversion project.

Other factors that impact the approach to CFC MDI phase-out in Cuba are as follows:

- The only significant production of the high quality CFCs needed for MDI use is in the Netherlands (European Union);

- Several non-Article 5 Countries have already phased-out CFC MDIs, in particular salbutamol CFC MDIs, and the target date for the completing the transition to CFC-free MDIs generally adopted by non-Article 5 Countries is 2005;

- CFC production has been phased-out in non-Article 5 Countries, except for the basic domestic needs of Article 5 countries, and for agreed “essential uses”. There is Governmental pressure on European Union producers to cease supply even for these uses, and the production of high quality CFCs for MDIs in the Netherlands is expected to end in 2004, with some stockpiling to meet demand in 2005/6.

Roles & Responsibilities – The following is a non-exhaustive list of Government Agencies and other interested parties that will play a role in the development and implementation of the National transition strategy for the phase-out of CFC MDIs, and their responsibilities:

Ministry of Science, Technology, and Environment (CITMA) (through the Ozone Technical Office - OTOZ):

- Coordinate the various activities resulting from this transition strategy: national education campaign, conversion of the national industry, formulation of the necessary legal provisions together with the Ministry of Public Health (MINSAP).
- Apply via UNDP to the Multilateral Fund for the Implementation of the Montreal Protocol to provide technical and financial assistance for the application of this National transition strategy.

Ministry of Public Health (MINSAP):

- Carry out the national education campaign in coordination with all other stakeholders, MINSAP, State pharmaceutical company, and Ministry of Science, Technology, and Environment (CITMA).
- Grant marketing authorizations for CFC-free MDIs.
- Withdraw CFC MDIs from the market in compliance with the agreed timetable and criteria.
- Formulate the necessary legal provisions together with the Ministry of Environment.
- Support the national education campaign.

State Pharmaceutical Company:

- Support to the national education and sensitisation campaign.
- Provide CFC-free products within the terms agreed in this strategy.
- Withdraw CFC products within the terms agreed.
4.2.2 Costs of the Cuban National Transition Strategy

At its 37th Meeting in July 2002 the MLF Executive Committee considered draft guidelines for MDI projects (Ref. UNEP/OzL.Pro/ExCom/37/58) and decided (Decision 37/61):

- To take note of the draft guidelines;
- To request members of the Executive Committee to submit comments on the issue to the Secretariat in time for a further discussion at the 40th Meeting of the Executive Committee;
- In the meantime, to allow consideration of some projects on a case-by-case basis, taking into account the relative need of the country to have an MDI project to ensure compliance, the relative cost-effectiveness of the project and the possibility that essential use applications for MDIs might be considered by the Parties as early as 2008.

The draft guidelines in Document UNEP/OzL.Pro/ExCom/37/58 cover both the preparation of National transition strategies and investment projects for phasing out CFCs in the MDI sub-sector. On “Transition Strategies” the guidelines state:

"In developing transitional strategies (action plan), Article 5 countries can be broadly classified according to the number of MDI units used per year in the country and whether these are produced locally or imported. The following will serve as broad classification for the purposes of defining funding support from the Multilateral Fund for transitional strategies:

- Low consumers of MDIs, with an annual usage of less than one million MDIs (equating to less than 25 tonnes of ODS per annum), and who are totally supplied by imports, will need minimal assistance. Experience in developed countries, where supply of CFC MDIs comes primarily from multi-national companies, is that CFC free alternatives can be introduced promptly within the regulatory framework of the country, and the corresponding CFC MDIs phased out;
- Large consumers of MDIs, with an annual use of more than one million MDIs, and who are totally supplied by imports. They will need more assistance in developing an understanding of the currently available range of products in their country, drafting an action plan for transition and communicating this to doctors and asthma/ COPD patients; and
- MDI producer countries, where the production could be from nationally-owned companies, joint ventures between Article 5 and non-Article 5 companies, partially-owned companies (partially owned by a non-Article 5 company), and/or a non-Article 5 enterprise. This is where most of the financial support will be focussed and could cover both the development and dissemination of transition action plans, as well as access to non-CFC alternate products.

Cuba clearly falls into the “MDI producer Countries” category.

The guidelines contain an extensive list of information requirements that are provided either in the body of this project document, or its Annexes. The detailed calculations of the cost of implementing the Transition Strategy are presented in Annex 7, and are estimated at US$ 190,000.00.
Conclusions - Considering all of the foregoing, and the unique situation relating to CFC MDI manufacture and consumption in Cuba, Cuba needs to be looking aggressively at ways to achieve the phase-out of CFC MDIs in 2005. This will require immediate commitment from all stakeholders, and the approval of MLF funding in 2002 for:

- Implementation of the proposed National CFC MDI conversion project, including provision for the transfer of the CFC-free MDI technology required for the CFC MDI products presently manufactured in Cuba; and,
- The development and implementation of a National transition strategy.

This must be followed by immediate action by all parties to progress the implementation of both the MDI conversion project and transition strategy.
5 PROJECT COSTS

5.1 INCREMENTAL CAPITAL COSTS - CFC MDI CONVERSION PROJECT

The following represents a summary of the budget costs for a flexible aerosol MDI manufacturing facility that is designed for use with the technology provider MDI formulation. This aerosol MDI manufacturing facility can operate at approximately 60 cans per minute giving an annual output of over 6 million cans/year based on 230 working days/single shift operation. This was used to determine the level of capital cost that Cuba would need taking into consideration specific requirements of the identified provider.

The filling machines comprise the following filling heads:

- **5cc capacity suspension/solution filler.**
 This filler is capable of filling either HFC or Ethanol product suspensions or solutions into the open can.
- **Valve crimper with vacuum capability.**
 This machine is capable of crimping 20mm metering valves without vacuum for CFC or HFA two stage formulations and with vacuum for HFA single stage formulations.
- **20ml capacity diaphragm suspension/propellant filler.**
 This machine is capable of filling CFC or HFA propellant only or HFA product suspensions under pressure through the aerosol valve.

The filling line comprises automatic can and valve feeders, an automatic checkweigher and a trayloader. It is complete with an electrical control system and a comprehensive validation documentation package, and the budget costs include installation and commissioning by the suppliers engineers. (Please refer to ANNEX 2 for a more detailed explanation of the costs).

Equipment Required: The final list of equipment to produce HFA MDI, including the one currently used for CFC MDI is as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Equipment Required for HFA</td>
<td></td>
</tr>
<tr>
<td>1. Mixing Vessel</td>
<td>659,899</td>
</tr>
<tr>
<td>2. Macromat Line for Filling MDI with HFA Suspensions/Solutions</td>
<td>507,169</td>
</tr>
<tr>
<td>Equipment in place or not needed</td>
<td></td>
</tr>
<tr>
<td>3. Spray Checking Machine</td>
<td>0</td>
</tr>
<tr>
<td>4. Weighing Balances</td>
<td>0</td>
</tr>
<tr>
<td>5. Air Filters</td>
<td>0</td>
</tr>
<tr>
<td>6. Labelling Machines</td>
<td>0</td>
</tr>
<tr>
<td>7. Laser Particle Counter</td>
<td>0</td>
</tr>
<tr>
<td>8. Ink jet Printer</td>
<td>0</td>
</tr>
<tr>
<td>9. Socoge Gauge</td>
<td>0</td>
</tr>
</tbody>
</table>

Sub-total for equipment for CFC-free MDI Manufacturing Facility	1,400,490
Packing, Freight, & Insurance	116,709
Contingencies (10%)	116,709
TOTAL FOR EQUIPMENT FOR CFC-free MDI MANUFACTURING FACILITY	1,400,490
3. Lab Testing Equipment Required: In addition to the equipment listed above, the laboratory will need to have a list of testing equipment to undertake the quality control in process and final product. This equipment will depend on the particular standard of quality determined by Cuba to produce HFA MDIs. This standard is a number (a percentage) that results from the cascade impactor test used by the USP. This equipment is not listed in the present project document as it is not eligible for funding under the Multilateral Fund.

5.2 TECHNOLOGY TRANSFER COSTS – CFC MDI CONVERSION PROJECT

The technology provider should be able to provide support to the Cuban laboratory to provide an alternative manufacturing capability to the existing CFC-propelled metered dose inhaler facility. The technology provider should have access to salbutamol HFA and BDP HFA or an alternative product with similar characteristics that can be used in replacement.

The technology provider should be able to provide assistance in the following ways:

- Access to data in support of regulatory approval
- Dossier compilation
- Facility design and equipment installation qualification
- Sourcing of components
- Clinical Trial management/execution
- Facility and equipment validation
- Production of a determined number of batches of each one of the products in presence of the Cuban technicians.
- Control checks to comply with the established quality standard.
- Handover the plant producing with HFA technology.

Details of the above will be subject to discussions between the parties upon award of the project. The technology provider would also be able to collaborate with other parties (for example equipment suppliers) to ensure that project timeframes are achieved within approved budgets.

TOTAL FOR EQUIPMENT FOR HFA MDI MANUFACTURING FACILITY

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Consumed in Equipment Proving Trials, Pilot Scale Production, Clinical Trials, Product Stability (10 batches at 25K per batch)</td>
<td>250,000</td>
</tr>
<tr>
<td>Costs of New Product Testing, Clinical Trial Testing, Product Registration and Approval</td>
<td>140,000</td>
</tr>
<tr>
<td>Overall Project Technical Supervision, Inspections, Certification of Completion</td>
<td>40,000</td>
</tr>
<tr>
<td>TOTAL CAPITAL COST FOR GENERAL HFA MDI MANUFACTURING FACILITY</td>
<td>1,830,490</td>
</tr>
</tbody>
</table>

Notes:

* Excluding CFC-free MDI Technology Transfer Costs
The table below provides an outline of costs for the technology provider during the project timescale, estimated at 2-3 years.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Costs (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory filer access, compilation of data as required by Cuban</td>
<td></td>
</tr>
<tr>
<td>Regulatory Authorities</td>
<td></td>
</tr>
<tr>
<td>Technical/Engineering support</td>
<td>240,000</td>
</tr>
<tr>
<td>• Travel</td>
<td></td>
</tr>
<tr>
<td>• Accommodation</td>
<td></td>
</tr>
<tr>
<td>• Subsistence Allowance</td>
<td></td>
</tr>
<tr>
<td>• Equipment Hire charges</td>
<td>Etc.</td>
</tr>
<tr>
<td>Validation for facility & equipment</td>
<td></td>
</tr>
<tr>
<td>Clinical trial planning, management & execution</td>
<td>(Included in ICC)</td>
</tr>
<tr>
<td>Payment to dossier holder ($400,000 pa)</td>
<td>800,000*</td>
</tr>
<tr>
<td>Total project cost</td>
<td>1,040,000</td>
</tr>
</tbody>
</table>

*capped based upon two years projected volumes of 5 million units each year.

It is proposed that the technology provider engineering personnel provide detailed specifications to ensure equipment is fit for its intended purpose. Equipment will be sourced from recognized suppliers or agents and will be fully inspected and tested prior to transport and installation at the manufacturing site.

Equipment suppliers will provide technical support during the build, testing and installation of the equipment and will provide formal documented training at the manufacturing site. Service contracts will be negotiated prior to placement of any order to ensure on-going technical after sales support.

The technology provider will assume responsibility for all engineering and validation activities during the project and will liaise directly with the manufacturing site to ensure a seamless transition of technologies.

The technology provider will provide project support in the form of technical assistance, project management, layouts, installation qualification etc.

The above table of costs exclude any equipment (formulation tanks, filling equipment, water baths, etc.) and ancillary building costs (e.g. building shell, cleanrooms, electrical, mechanicals etc.) that are to be provided by either equipment suppliers or the Cuban authorities.

Please note that it is anticipated that the layout/footprint for the installation would be in the region of 400 square metres, the design layout and other details of which would be dependent upon the footprint of the outer shell provided by the authorities in Cuba.

In order to access the files of the technology provider alliance partners, it will be necessary to pay a fee of US$800,000 during the project life. This will be payable as two annual fees.

Furthermore, as previously noted, should it be deemed prudent, the technology provider will be willing to help support the retrofitting of HFA capability for the existing CFC filling lines, once the new facility is up and running.
The Laboratorio Julio Trigo Lopez will be responsible for all the engineering works required to adapt the plant to suitable standards requirements of the HFA filling line. The Government of Cuba is committed to ensure in a period no longer than 6 months the preparation of a plant complying with all the specifications of space, temperature, humidity and others required by the technology provider to produce HFA MDI.

In order to expedite registration process, provisional license can be provided by CECMED based on information of the product produced in the technology provider plant. However, it is required to do all the tests with the product produced in the Cuban lab.

5.3 INCREMENTAL COSTS – NATIONAL MDI TRANSITION STRATEGY

For both of the alternatives the development and implementation of the National MDI Transition Strategy is the same: US$ 190,000.00

5.4 INCREMENTAL OPERATING COSTS - CFC MDI CONVERSION PROJECT

Incremental operating costs are requested for four years and are based on the current production of CFC MDIs. Details of the calculations are provided in ANNEX 3.

TOTAL ANNUAL INCREMENTAL OPERATING COST (Including both drugs) US$ 1,670,976

TOTAL FOR TWO YEARS AT NPV US$ 2,900,000

5.5 INCREMENTAL OPERATING BENEFITS - CFC MDI CONVERSION PROJECT

There are no incremental operating benefits arising from the conversion to the CFC replacement technology.

5.6. TOTAL PROJECT INCREMENTAL COSTS (excluding MDI Technology Transfer)

% Article 5.1 Country Ownership 100%

• TOTAL COST (Capital + Operating Costs – Operating Benefits) US$ 4,730,000

5.7. PROJECT COST EFFECTIVENESS & FUNDING REQUESTED FROM THE MLF

TOTAL PROJECT COST (Transition Strategy not included) = US$ 5,770,000
TOTAL ODS ELIMINATED = 109.1 ODP Kg
INCLUDING THE TECHNOLOGY TRANSFER FEE (US$ 1,040,000) THE COST EFFECTIVENESS OF THE PROJECT IS 52.88 US$/Kg
6. FINANCING PLAN

Initial approval from the Multilateral Fund will include the funds necessary to cover the incremental capital costs, the incremental operational costs and the first half of the technology transfer.

Once the plant is handed over to produce MDI with HFA technology a second disbursement including the second half of the technology transfer fees will be released.

7. PROJECT IMPACT

This project will eliminate the use of 109.1 ODP tons per year. This is based on the actual ODS consumption during the calendar year 2001.

8. PROJECT IMPLEMENTATION

8.1 MANAGEMENT

While the CFC MDI replacement technology will be sourced from appropriate centres of expertise using funds requested under the project, UNDP will oversee the successful implementation of this project, and will provide additional technical assistance during project execution.

Because of the specialist nature of the CFC-free MDI manufacturing equipment, this equipment will be built and test run at the equipment supplier’s factory before being dismantled, parts labelled to facilitate reassembly, and shipped to the beneficiary enterprise. In addition, the equipment supplier will also install and commission the equipment at the beneficiary enterprise’s factory, and conduct “Factory Acceptance Test Trials”.

Any construction work and services required to accommodate and operate the equipment for the new CFC Free MDI aerosol technology will be carried out by the counterpart (Laboratorio Farmacéutico "Julio Trigo López"). The relevant details are not reflected in the project document. The specifications for any construction work will be coordinated by Laboratorio Farmacéutico "Julio Trigo López" and elaborated by a local construction company after project approval and as an outcome of the necessary site inspection and related discussions between plant staff, the selected international contractor (technology and equipment supplier) and UNDP project staff.

8.2 TENTATIVE PROJECT SCHEDULE

- Adaptation of plant and installation of the equipment: 9 months
- Starting production at commercial level: 2 months
- Obtaining registration to produce in Cuba: 6 months

Detailed tentative project schedule is presented in next page:
<table>
<thead>
<tr>
<th>TASK</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission of Project Proposal to MLF</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExCom Approval of Project Proposal</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Document submitted to beneficiary</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Project Document Signature</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Implementation Appraisal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation/Agreement of Equipment Specs. etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bid Documents Prepared and Bids Requested</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature of Contract for CFC-free MDI Technology Transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bid Analysis & Vendor Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Supply Contracts Awarded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFC-free MDI Manufacturing Equipment Delivered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation & Commissioning of CFC-free MDI Manufacturing Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFC-free MDI Formulation, Stability Testing & Clinical Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production of CFC-free MDIs on manufacturing equipment for Stability Testing, Clinical Trials, Registration, & Approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFC-free MDI Approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Scale CFC-free MDI Manufacture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Market Surveillance Data Collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Transition Strategy Implementation Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification & Certification of Project Completion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission of Project Completion Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3 Milestones for Monitoring Project Implementation

<table>
<thead>
<tr>
<th>Task</th>
<th>Month*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Project document submitted to beneficiary</td>
<td>1-2</td>
</tr>
<tr>
<td>(2) Project document signature</td>
<td>2-3</td>
</tr>
<tr>
<td>(3) Implementation Appraisal</td>
<td>3</td>
</tr>
<tr>
<td>(4) Signature of Contract for CFC-free MDI Technology Transfer</td>
<td>4</td>
</tr>
<tr>
<td>(5) Equipment Bid Documents prepared and Bids requested</td>
<td>4</td>
</tr>
<tr>
<td>(6) Bids Analysis, Vendor Selection, & Contracts Awarded</td>
<td>5-6</td>
</tr>
<tr>
<td>(7) MDI Manufacturing Equipment Delivered, Installed, & Commissioned</td>
<td>7-17</td>
</tr>
<tr>
<td>(8) Commence Production of CFC-free MDIs on manufacturing equipment for Stability Testing, Clinical Trials, Registration, & Approval</td>
<td>13-18</td>
</tr>
<tr>
<td>(9) CFC-free MDI Approval</td>
<td>18-21</td>
</tr>
<tr>
<td>(10) Start of Commercial CFC-free MDI manufacture</td>
<td>21-></td>
</tr>
<tr>
<td>(11) Post Market Surveillance Data Collection</td>
<td>25-></td>
</tr>
<tr>
<td>(12) Verification & Certification of Project Completion</td>
<td>28</td>
</tr>
<tr>
<td>(13) Confirmation of Destruction/Disablement of baseline CFC MDI equipment replaced with MLF funding</td>
<td>29</td>
</tr>
<tr>
<td>(14) Submission of Project Completion Report</td>
<td>30</td>
</tr>
<tr>
<td>Commence MDI Transition Strategy Activities</td>
<td>10</td>
</tr>
</tbody>
</table>

As measured from project approval
ANNEX 1 - ENTERPRISE BASELINE DATA

FULL NAME: Empresa Laboratorio Farmacéutico "Julio Trigo López" (MDI Plant of Empresa "Reinaldo Gutiérrez")

ADDRESS: Avenida Independencia Km 5 ½, Boyeros, Ciudad de la Habana, Cuba.

CONTACT PERSONS: Lic. Fidel Montiel Curbelo Director
Lic. Dignora Berrio Fleites Plant Manager

TEL / FAX: Tel: (537) 578807, 444498 Fax: (537) 547270

E-mail: rgut1@infomed.sld.cu

SHAREHOLDERS: State-owned, under Ministerio de la Industria Basica

EMPLOYEES IN MDI PLANT:

YEAR ESTABLISHED: 1991

| Line 1. Laboratorio Farmacéutico "Julio Trigo López" Production Equipment
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>CFC-11 Pump</td>
</tr>
<tr>
<td>120 Litre Drug Suspension Preparation Vessel</td>
</tr>
<tr>
<td>Drug Suspension Preparation Vessel Recirculation/Chiller System</td>
</tr>
<tr>
<td>Product Filler 43 ml</td>
</tr>
<tr>
<td>CFC-12 Propellant Pump</td>
</tr>
<tr>
<td>Propellant Filler</td>
</tr>
<tr>
<td>Aerosol Filling Machine</td>
</tr>
</tbody>
</table>
Line 2. Laboratorio Farmacéutico "Julio Trigo López" Production Equipment

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MAKE/MODEL</th>
<th>SERIAL No.</th>
<th>YEAR</th>
<th>PROPOSED ACTION</th>
<th>DISPOSAL PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11 Pump</td>
<td>GRACO</td>
<td>226845</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>40 Litre Drug Preparation Vessel</td>
<td>Local Manufacture</td>
<td>N/A</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Drug Suspensión Preparation Vessel Recirculation/Chiller System</td>
<td>ALFA-LAVAL 2 kW</td>
<td>N/A</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Product Filler</td>
<td>PAMASOL 2001/10</td>
<td>7145-12381</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Product Filler</td>
<td>PAMASOL 2001/3-1</td>
<td>6262-10969</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Crimping & Gassing Unit</td>
<td>PAMASOL 2005/2</td>
<td>6262-10971</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Crimping & Gassing Unit</td>
<td>PAMASOL 2005/10</td>
<td>7146-12382</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
</tbody>
</table>

BASELINE PRODUCTION DATA - 1999 – 2001

<table>
<thead>
<tr>
<th>Product</th>
<th>Production Volume (Millions of units)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>200 dose Salbutamol MDI</td>
<td>3.9</td>
</tr>
<tr>
<td>50 µg Beclomethasone MDI</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>4.1</td>
</tr>
</tbody>
</table>
BASELINE CFC CONSUMPTION DATA - 1999 – 2001

<table>
<thead>
<tr>
<th>Product</th>
<th>CFC-11</th>
<th>CFC-12</th>
<th>CFC-11</th>
<th>CFC-12</th>
<th>CFC-11</th>
<th>CFC-12</th>
<th>CFC-11</th>
<th>CFC-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 dose Salbutamol MDI</td>
<td>23.1</td>
<td>47.9</td>
<td>23.8</td>
<td>59.8</td>
<td>28.9</td>
<td>59.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 µg Beclomethasone MDI</td>
<td>1.4</td>
<td>1.9</td>
<td>5.0</td>
<td>11.6</td>
<td>8.8</td>
<td>11.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Substance Total</td>
<td>24.5</td>
<td>49.8</td>
<td>28.8</td>
<td>71.4</td>
<td>37.7</td>
<td>71.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Grand Total</td>
<td>74.3</td>
<td>84.7</td>
<td>109.1</td>
<td>109.1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Estimated about the same as 2001

The project is prepared based on the total annual consumption of CFC-11 and CFC-12 in 2001 of 109.1 ODP tonnes (including losses).
ANNEX 2 – REPLACEMENT EQUIPMENT INCREMENTAL CAPITAL COSTS

Budget Costs for a HFC Aerosol MDI Manufacturing Facility with a Production Capacity of 6.6 million cans/year based on 230 working days/single shift operation

Specifications and details for Production Equipments:

- **Mixing Vessel** ... US$659,899
 - 500 Lt. Capacity,
 - Weight platform or load cell.
 - Drug addition system,
 - With complete pipe work & valves,
 - Electrical control panel for process control.
 - Seals & gaskets compatible with 134a.
 - Insulated Jacket - For chilled water circulation
 - Stirrer – Top entry flame proof agitator.

Connection on vessel lid
- Stirrer entry port.
- Spray balls
- Pressure / vacuum gauge
- Sight glass & Light
- Relief valve
- Level probe
- Propellant supply port.
- Drug addition port.
- Air, vacuum or N₂ connection

Connection on the vessel –
- Outlet valve (high flow)
- Product return line entry from filling machine
- Vessel recirculation system
- Temperature probe for product

Jacket: Chilled water supply & return, pressure gauge, & temperature probe for chilled water,

Weighing system : Least count: 0.5 kg.

Drug addition vessel –
- Capacity – approved 15 Lt.
- Vessel with removable lid for cleaning.

High shear dispersion unit Model No: Dispax 2000
- Capacity – 500 Lt. / hour
- Differential Pressure – 1 bar
- Inlet pressure: 3 to 8 bar
- Seal damage detection system
- Product Contact parts: SS316

Pressure Vessel
- Pressure: 10 bar
- Capacity: 100 lt
- Dish end removable lid
- Dish end bottom
- Mounted on legs with wheel
- Inlet and outlet connection of propellant
- Size: 15 nab with ball valve
- Pressure gauge 0-16 bar
- Pressure relief valve
- View glass

Propellant 134a transfer pump

For transfer of P134a from storage tank to process tank
Model GG895 capacity – 25 GPM

2. P2045 Macromat Line for Filling MDI with HFA Suspensions/Solutions US$ 507,169
 Capacity 2.5 litres/min. at 10 bar Including flexible supply/return hoses.

2.1 ONE only conveyor system comprising: -
 - Can loading table for manual feeding of cans.
 - Conveyor from loading table through Macromat and Checkweigher to unloading table.
 - Can unloading table.

 For the sum of .. US 42,500

2.2 ONE P2045 Macromat aerosol filling machine indexing unit with: -
 - Quick release 18 pocket starwheel/outer guide to suit 22 mm ø cans.
 - Inlet/Outlet rotary unscrambler to suit adjacent conveyor.
 - Stainless steel frame with stainless steel clad base unit.
 - Pneumatically driven central height adjustment column.
 - Fully pneumatic operation.
 - ‘DH’ Syma fully interlocked enclosure.
 - Integral extraction system with spigot for connection to house extract.

 The machine is entirely pneumatic in operation and has a security system which prevents the starwheel from rotating if a head has not completed its cycle, or the rotary unscrambler is not switched on. This system can be easily extended with outer interlocks to the customers exact requirements.

 Each head can be individually controlled from the operators panel for changeover and quality control purposes. A counting device with zero
setting and pressure gauges for air and vacuum supply are situated above the control panel.

An air receiver is situated in the base of the machine with a pressure regulator, automatic oiler and ‘exhaust’ shut off valve for each head.

The whole unit is clad in stainless steel panels with easily removable access doors exposing all working parts. An exhaust manifold to which all exhausts are connected is provided, enabling quiet operation.

For the sum of .. US 86,955

Machines fitted to above base unit: -

2.2.1 Valve Inserter

ONE P2058 Valve Inserter to handle 20 mm valves without diptubes comprising:-

- Insertion device mounted on Macromat central column.
- Press down device prior to Crimper with no valve detector.
- Oil free pneumatic operation.

For the sum of .. US 13,090

2.2.1.1 Vibratory Valve Sorter

ONE free standing vibratory valve sorter comprising:-

- Electrically driven vibratory valve sorting bowl tooled to handle 20 mm metering valves.
- Output speed up to 120 valves per minute.
- Stainless steel base and stand
- DH Cleanline acoustic enclosure

For the sum of .. US 25,500

2.2.1.2 Valve Transport System

ONE valve transport system to deliver the valves from the vibratory valve sorting bowl to each Macromat comprising:-

- Starwheel driven valve transport system.
- High level valve feed rail.
- Dividing piece to divert valves on demand to each Macromat.

For the sum of .. US 46,750
2.2.2 Vacuum Crimper

ONE X02002 Vacuum Crimper suitable for use with or without vacuum.

For single stage HFA formulations vacuum is required and for two stage CFC or HFA formulations vacuum is not required.

Vacuum Crimper comprising:-
- Vacuum crimp unit mounted to bracket above Macromat starwheel.
- External depth/diameter adjustment.
- Vacuum dwell adjustment.
- Sub mounted, oil free pneumatic control system.
- Collet and depth stop for one type of aerosol valve.

For the sum of ... US 31,790

2.2.2.1 ONE OFF pneumatically operated PIAB pump for vacuum crimper.

For the sum of ... US 4,250

2.2.3 Diaphragm Suspension Filler

ONE diaphragm suspension filler to pressure fill product through the aerosol valve and aspirate residue.

Diaphragm suspension filler suitable for filling:-
- HFA product suspensions.
- CFC propellant only.
- HFA propellant only.

Filler comprising:-
- 20 cc Diaphragm metering unit with recirculation system.
- Quick release mounting bracket for metering unit with pneumatic control manifold mounted in Macromat back cabinet.
- Diaphragm inlet/outlet shut off valves to enable recirculation.
- Diaphragm aspirator type filling nozzle with filling nozzle insert to suit one valve type mounted above Macromat starwheel.
- Vacuum filter and pipework to work in conjunction with aspirator filling head and vacuum pump to evacuate residue after filling.
- Sub base mounted oil free pneumatic control system.
- Product contact parts in stainless steel 316L and PTFE complete with material certificates for validation purposes.

For the sum of ... US 36,677

2.2.3.1 Vacuum Pump
ONE vacuum pump to work in conjunction with diaphragm filler aspirator nozzle when filling HFA product suspensions comprising:-

- Pneumatic vacuum pump assembly type PIAB P14019/004.
- Suction capacity 135-190 l/min.
- Vacuum up to 90k Pa.
- Air supply control valve, regulator and pressure gauge.
- Cuno filter type V12098/002
- Cuno filter cartridge type V12098/002-001

For the sum of .. US 4,250

2. 3 Checkweigher.

To supply only ONE OFF P2023/3 pneumatically driven indexing unit comprising: -

- 12 Pocket indexing starwheel for 22 mm diameter container.
- Position for fitting weigh cell.
- Stainless steel clad base unit.
- Syma clean line fully interlocked enclosure.

Fitted with: -

2.3.1 ONE OFF Graseby freestyle precision weigh cell including: -

2.3.1.1 Validation support documentation for checkweigher.

For the sum of ... US 75,590

2.4 DH Electrolink Control System

ONE DH Electrolink control system for Macromat aerosol filling line comprising:-

- Free standing stainless steel enclosure
- Main isolators.
- 24 Vdc power supply.
- Motor circuit breakers.
- Motor contractors.
- Inverters.
- PILZ safety relays.
- Stainless steel stop/start stations.
- Fibre optic component queue sensors.
- Guard interlocks.
- Lighting.
- Local isolators for drive units.
- Annunciator panel.
For the sum of .. US 25,500

2.5 To supply only ONE OFF P2089/001 Pamasol double diaphragm suspension supply pump capacity 2.5 litres/min. at 10 bar. Including flexible supply/return hoses.

For the sum of .. US 37,817

2.6 Qualification Documentation

To provide the following documentation to aid the qualification of the Macromat aerosol filling line.

- Software Design Specification.
- Site Acceptance Test Protocols (S.A.T).
- Installation Qualification Test Protocols.
- Operational Qualification Test Protocols.
- Sensor/Device listing.
- Operator manual.
- As built Mechanical/Electrical Drawings.
- PLC Program, Cross Reference List and Ladder Diagram.

For the sum of .. US 17,000.00

2.7 Build up/Test Run/F.A.T

- To align and connect all machines as production line.
- To supply compressed air, power and propellant pumping/pipework system to equipment.
- To run a quantity of up to 10,000 units on equipment assuming free issue of propellant and components.
- To conduct Factory Acceptance Tests to previously agreed test protocols.

For the sum of .. US 17,000.00

2.8 Installation/Commissioning/S.A.T

To install and commission filling line on site at customer’s premises and conduct Site Acceptance Tests to previously agreed test protocols.

Estimated duration – 2 weeks.
Travel, accommodation and out of pocket expenses included in price at cost.

For the sum of .. US 42,500

Summary Filling Line

2.1 Conveyor System ... US 42,500.00
2.2 Macromat Base Unit/Enclosure ... US 86,955.00
2.2.1 Valve Inserter ... US 13,090.00
2.2.1.1 Vibratory Valve Sorter .. US 25,500.00
2.2.1.2 Valve Transport System ... US 46,750.00
2.2.2 Vacuum Crimper .. US 31,790.00
2.2.2.1 Vacuum Pump .. US 4,250.00
2.2.3 Diaphragm Suspension Filler ... US 36,677.00
2.2.3.1 Vacuum Pump .. US 4,250.00
2.3 Indexing Checkweigher ... US 75,590.00
2.4 Electrical Control System .. US 25,500.00
2.5 Suspension Supply Pump ... US 37,817.00
2.6 Qualification Documentation ... US 17,000.00
2.7 Line Assembly at DH/FAT ... US 17,000.00
2.8 On Site Installation .. US 42,500.00

Total … US 507,169.00

- **Spray checking machine**.. *(Common for CFC and HFA)*
 - Model: NEIS inhaler spray testing machines
 - Speed: 120 cpm

- **Weighing balances**..*(Common for CFC and HFA)*
 - Capacity: 300 gm, 600 gm and 6000 gm
 - Least count/ accuracy: 10 mg

- **Air filters**..*(Common for CFC and HFA)*
 - Filtration rating: 1 micron Model: AO –0145G
 - Filtration rating: 0.01 micron Model: AA-0145G
 - End connection: 25 nab ASA 150 flange

- **Labelling Machines**...*Not required*
 - Speed: 150 cpm
 - Product: 22 mm dia aluminium container
 - Roll form self adhesive labels.

- **Laser particle counter**...*(Common for CFC and HFA)*
For area air cleanliness check. Model: 3313

- **Ink jet printer:** ..*Not required*
 - Model: A200

- **Socoge gauge: for crimper control**..............................*(Common for CFC and HFA)*
 - Model: Crimper control Digital part No. 743-03-143

For testing aerosol container (22 mm dia and 72 mm height) to reject non-spraying and continuous spray container.

Summary of Total Incremental Capital Costs

Additional Equipment Required for HFA
1. Mixing Vessel.. US$ 659,900.00
2. Filling Line.. US$ 507,169.00

Equipment in place or not needed
3. Spray Checking Machine ... US$ 0.00
4. Weighing Balances .. US$ 0.00
5. Air Filters .. US$ 0.00
6. Labelling Machine ... US$ 0.00
7. Laser Particle Counter .. US$ 0.00
8. Ink Jet Printer.. US$ 0.00
9. Socoge Gauge ... US$ 0.00

TOTAL .. US$ 1,167,069.00

All prices are ex-works, excluding packing, freight, insurance, off loading, positioning or running of services e.g. electricity, air, gas, water, drainage to or from the equipment.

DELIVERY: 9 months from receipt of order, deposit and finalization of technical details.

Including packing, freight, insurance, off loading, positioning or running of services e.g. electricity, air, gas, water, drainage to or from the equipment, the total figure will be as follows:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>1,167,069</td>
</tr>
<tr>
<td>Packing, Freight, & Insurance</td>
<td>116,710</td>
</tr>
<tr>
<td>Contingencies (10%)</td>
<td>116,710</td>
</tr>
<tr>
<td>TOTAL FOR EQUIPMENT FOR CFC-free MDI MANUFACTURING FACILITY</td>
<td>1,400,490</td>
</tr>
</tbody>
</table>
ANNEX 3 – INCREMENTAL OPERATING COSTS

200 dose Salbutamol MDI

<table>
<thead>
<tr>
<th>Item</th>
<th>Existing CFC Formulation</th>
<th>Likely HFC Formulation (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantity per MDI</td>
<td>Price US$</td>
</tr>
<tr>
<td>CFC-11</td>
<td>5.729 gm</td>
<td>4.56974 US$/Kg</td>
</tr>
<tr>
<td>CFC-12</td>
<td>11.871 gm</td>
<td>6.17779 US$/Kg</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aluminium Monobloc Can</td>
<td>1</td>
<td>0.115</td>
</tr>
<tr>
<td>Metering Valve</td>
<td>1</td>
<td>0.168</td>
</tr>
<tr>
<td>Actuator</td>
<td>1</td>
<td>0.086</td>
</tr>
<tr>
<td>Unit boxes</td>
<td>1</td>
<td>0.0016</td>
</tr>
<tr>
<td>Other Costs Components</td>
<td></td>
<td>0.0225</td>
</tr>
<tr>
<td>Salbutamol</td>
<td>0.023 gm</td>
<td>385 US$/Kg</td>
</tr>
<tr>
<td>Sorbitan Trioleate</td>
<td>0.046</td>
<td>17.05 US$/Kg</td>
</tr>
<tr>
<td>Cost per MDI</td>
<td></td>
<td>US$ 0.5046</td>
</tr>
<tr>
<td>Annual Production</td>
<td></td>
<td>4.8 million units</td>
</tr>
<tr>
<td>Annual Cost</td>
<td></td>
<td>US$ 2,422,080</td>
</tr>
</tbody>
</table>

Annual Incremental Operating Cost for Conversion of Salbutamol CFC MDI to HFC 134a = US$ 1,322,400

Incremental Operational Cost 2 years = US$ 2,295,074

As of May 2003
50 µg Beclomethasone MDI

<table>
<thead>
<tr>
<th>Item</th>
<th>Existing CFC Formulation</th>
<th>Likely HFC Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11</td>
<td>6.9442 gm</td>
<td>4.56974 US$/Kg</td>
</tr>
<tr>
<td>CFC-12</td>
<td>9.2501 gm</td>
<td>6.17779 US$/Kg</td>
</tr>
<tr>
<td>Ethanol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aluminium Monobloc Can</td>
<td>1</td>
<td>0.115</td>
</tr>
<tr>
<td>Metering Valve</td>
<td>1</td>
<td>0.168</td>
</tr>
<tr>
<td>Actuator</td>
<td>1</td>
<td>0.086</td>
</tr>
<tr>
<td>Unit boxes</td>
<td>1</td>
<td>0.0016</td>
</tr>
<tr>
<td>Other Costs Components</td>
<td></td>
<td>0.0225</td>
</tr>
<tr>
<td>Beclomethasone Dipropionate</td>
<td>.01157 gm</td>
<td>25000</td>
</tr>
<tr>
<td>Oleic Acid</td>
<td>0.001</td>
<td>1.0752</td>
</tr>
<tr>
<td>Cost per MDI</td>
<td>US$ 0.7725</td>
<td>US$ 1.0630</td>
</tr>
<tr>
<td>Annual Production</td>
<td>1.2 million units</td>
<td>1.2 million units</td>
</tr>
<tr>
<td>Annual Cost</td>
<td>US$ 927,000</td>
<td>US$ 1,275,576</td>
</tr>
</tbody>
</table>

Annual Incremental Operating Cost for Conversion of Beclomethasone CFC MDI = US$ 348,576

IOC 2 years = US$ 604,926

* As of May 2003
** Alternative drugs considered are BDP HFA or Fluticasone

Notes:
- For the conversion of the Salbutamol CFC MDI to a HFC 134a formulation a new internally lacquered can (20% cost increase), and a new metering valve (50% cost increase), are required.
- For the conversion of both the Salbutamol and Beclomethasone CFC MDIs to Ethanol/HFC-134a formulations, a new metering valve (50% cost increase), is required.

The weight of Ethanol replacing the CFC-11 in the CFC-free formulations reflects the different liquid densities of these excipients

TOTAL ANNUAL INCREMENTAL OPERATING COST

(US$ 1,322,400 + US$ 348,576)

TOTAL FOR TWO YEARS AT NPV

US$ 2,900,000
ANNEX 4 – LIST OF EQUIPMENT TO BE RETROFITTED, DESTROYED, OR RENDERED UNUSABLE WITH ODS, DURING PROJECT IMPLEMENTATION, OR FOLLOWING SUCCESSFUL PROJECT COMPLETION

Under this project, the existing CFC MDI manufacturing facility will be replaced by a new CFC-free MDI manufacturing facility of equivalent production capacity. The following tables summarise the existing CFC MDI production equipment at Laboratorio Farmacéutico "Julio Trigo López":

Line 1. Laboratorio Farmacéutico "Julio Trigo López" Production Equipment

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MAKE/MODEL</th>
<th>SERIAL No.</th>
<th>YEAR</th>
<th>PROPOSED ACTION</th>
<th>DISPOSAL PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11 Pump</td>
<td>GRACO 226845</td>
<td>185 a</td>
<td>1994</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>120 Litre Drug Suspension Preparation Vessel</td>
<td>D.H. INDUSTRIES 3R4035 x 12</td>
<td>N/A</td>
<td>1994</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Drug Suspensión Preparation Vessel Recirculation/Chiller System</td>
<td>ALFA-LAVAL 3 kW</td>
<td>N/A</td>
<td>1994</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Product Filler 43 ml</td>
<td>PAMASOL 2001</td>
<td>N/A</td>
<td>1994</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>CFC-12 Propellant Pump</td>
<td>PAMASOL 2008/12</td>
<td>9778-15644</td>
<td>1994</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Propellant Filler</td>
<td>PAMASOL 2011</td>
<td>N/A</td>
<td>1994</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>Aerosol Filling Machine</td>
<td>PAMASOL 2045/14 Type A</td>
<td>N/A</td>
<td>1994</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
</tbody>
</table>

Line 2. Laboratorio Farmacéutico "Julio Trigo López" Production Equipment

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MAKE/MODEL</th>
<th>SERIAL No.</th>
<th>YEAR</th>
<th>PROPOSED ACTION</th>
<th>DISPOSAL PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11 Pump</td>
<td>GRACO 226845</td>
<td>186a</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
<tr>
<td>40 Litre Drug Suspension</td>
<td>Local</td>
<td>N/A</td>
<td>1991</td>
<td>Replace with equivalent R134a Equipment</td>
<td>Destruction When Conversion Complete</td>
</tr>
</tbody>
</table>
Line 2. Laboratorio Farmacéutico "Julio Trigo López" Production Equipment

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MAKE/MODEL</th>
<th>SERIAL No.</th>
<th>YEAR</th>
<th>PROPOSED ACTION</th>
<th>DISPOSAL PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation Vessel</td>
<td>Make/Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Suspensión</td>
<td>ALFA-LAVAL 2 kW</td>
<td>N/A</td>
<td>1991</td>
<td>Replace with equivalent R134a</td>
<td>Destruction When Conversion</td>
</tr>
<tr>
<td>Preparation Vessel</td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td>Complete</td>
</tr>
<tr>
<td>Recirculation/Chiller</td>
<td>System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Filler</td>
<td>PAMASOL 2001/10</td>
<td>7145-12381</td>
<td>1991</td>
<td>Replace with equivalent R134a</td>
<td>Destruction When Conversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td>Complete</td>
</tr>
<tr>
<td>Product Filler</td>
<td>PAMASOL 2001/3-1</td>
<td>6262-10969</td>
<td>1991</td>
<td>Replace with equivalent R134a</td>
<td>Destruction When Conversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td>Complete</td>
</tr>
<tr>
<td>Crimping & Gassing</td>
<td>PAMASOL 2005/2</td>
<td>6262-10971</td>
<td>1991</td>
<td>Replace with equivalent R134a</td>
<td>Destruction When Conversion</td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td>Complete</td>
</tr>
<tr>
<td>Crimping & Gassing</td>
<td>PAMASOL 2005/10</td>
<td>7146-12382</td>
<td>1991</td>
<td>Replace with equivalent R134a</td>
<td>Destruction When Conversion</td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td>Complete</td>
</tr>
</tbody>
</table>

All of the items above that are directly capable of CFC consumption must be dismantled and destroyed, or otherwise rendered unusable with CFCs once the conversion to CFC-free MDI products has been successfully completed. Items that are not directly capable of CFC consumption, such as vacuum pumps, chillers, or mixing vessels, may be retained for use in other, CFC-free MDI manufacturing operations at Laboratorio Farmacéutico "Julio Trigo López", subject to agreement and formal authorisation by the UNDP Consultant managing project implementation.

ENTERPRISE DECLARATION

- **Laboratorio Farmacéutico "Julio Trigo López"** undertakes to dismantle and destroy, or otherwise rendered unusable with CFCs, all of the existing CFC MDI manufacturing equipment once the conversion to CFC-free MDI products has been successfully completed.

- **Laboratorio Farmacéutico "Julio Trigo López"** undertakes not to submit any of the above-mentioned existing CFC MDI manufacturing equipment that are not destroyed following project completion, for replacement under any future ODS phase-out projects.

Authorised Signature: ___

(Laboratorio Farmacéutico "Julio Trigo López")

Date: __